
Lists

Chapter 12

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Specifications for the ADT List

• Using the ADT List

• Java Class Library: The Interface List

• Java Class Library: The Class
ArrayList

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Describe the ADT list

• Use the ADT list in a Java program

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Lists

• A collection

 Has order … which may or may not matter

 Additions may come anywhere in list

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 12-1 A to-do list

Lists

• Typical actions with lists

 Add item at end (or anywhere)

 Remove an item (or all items)

 Replace an item

 Look at an item (or all items)

 Search for an entry

 Count how many items in the list

 Check if list is empty

Copyright ©2012 by Pearson Education, Inc. All rights reserved

ADT List

• Data

 A collection of objects in a specific order and

having the same data type

 The number of objects in the collection

• Operations

 add(newEntry)

 add(newPosition, newEntry)

 remove(givenPosition)

 …

Copyright ©2012 by Pearson Education, Inc. All rights reserved

ADT List

• Operations (ctd.)

 clear()

 replace(givenPosition, newEntry)

 getEntry(givenPosition)

 contains(anEntry)

 getLength()

 isEmpty()

 toArray()

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 12-2 The effect of ADT list operations

on an initially empty list

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 1 Write pseudocode statements that add some objects to a
list, as follows. First add c, then a, then b, and then d, such that the
order of the objects in the list will be a, b, c, d.

Question 2 Write pseudocode statements that exchange the third
and seventh entries in a list of 10 objects.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 1 Write pseudocode statements that add some objects to a
list, as follows. First add c, then a, then b, and then d, such that the
order of the objects in the list will be a, b, c, d.

Question 2 Write pseudocode statements that exchange the third
and seventh entries in a list of 10 objects.

myList.add(c)
myList.add(1, a)
myList.add(2, b)
myList.add(4, d)

seven = myList.remove(7)
three = myList.remove(3)
myList.add(3, seven)
myList.add(7, three)

Another solution:
seven = myList.getEntry(7)
three = myList.getEntry(3)
myList.replace(3, seven)
myList.replace(7, three)

List

• View list interface, Listing 12-1

• Using the ADT List

 Don’t need to know how of implementation

 Only need to know what it does

• Consider keeping list of finishers of a

running race

 View client code, Listing 12-2

 Output

 Copyright ©2012 by Pearson Education, Inc. All rights reserved

Note: Code listing files

must be in same folder

as PowerPoint files

for links to work

Chapter12-code_listings.htm
Chapter12-code_listings.htm
Chapter12-code_listings.htm
Chapter12-code_listings.htm
Chapter12-code_listings.htm
Chapter12-code_listings.htm
Chapter12-code_listings.htm

Figure 12-3 A list of numbers that identify runners in the order in

which they finished a race

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 3 In the previous example, what changes to testList are
necessary to represent the runner’s numbers as Integer objects instead
of strings?
 ListInterface<String> runnerList = new AList<String>();
 // runnerList has only methods in ListInterface
 runnerList.add("16"); // winner
 runnerList.add(" 4"); // second place
 runnerList.add("33"); // third place
 runnerList.add("27"); // fourth place
 displayList(runnerList);

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 3 In the previous example, what changes to testList are
necessary to represent the runner’s numbers as Integer objects instead
of strings?
 ListInterface<String> runnerList = new AList<String>();
 // runnerList has only methods in ListInterface
 runnerList.add("16"); // winner
 runnerList.add(" 4"); // second place
 runnerList.add("33"); // third place
 runnerList.add("27"); // fourth place
 displayList(runnerList);

ListInterface<Integer> rList = new AList<Integer>();
rList.add(16);
rList.add(4);
rList.add(33);
rList.add(27);
rList.displayList();

Java Class Library: The
Interface List

• Method headers

 public T remove(int index)

 public void clear()

 public boolean isEmpty()

 public boolean add(T newEntry)

 public void add

 (int index, T newEntry)

 ...

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Class Library: The
Interface List

• Method headers (ctd.)

 public T set(int index, T anEntry)

 // like replace

 public T get(int index)

 // like getEntry

 public boolean contains

 (Object anEntry)

 public int size()

 // like getLength

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Class Library: The
Interface ArrayList

• Implementation of ADT list with resizable

array

 Implements java.util.list

• Constructors available

 public ArrayList()

 public ArrayList

 (int initialCapacity)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Exceptions

Copyright © 2012, Oracle. All rights reserved.

Exceptions and Assertions

What Will I Learn?

Objectives
 In this lesson, you will learn how to:
 •

Use exception handling syntax to create reliable
 applications
 •

Use try and throw statements
 •

Use the catch, multi-catch, and finally statements
 •

Recognize common exception classes and categories
 •

Create custom exception and auto-closeable
 resources

Copyright © 2012, Oracle. All rights reserved.

2

Exceptions and Assertions

Why Learn It?
 Purpose
 The user experience and programming functionality are very
important components to a well designed program.

Imagine requesting a software from a major company, paying
lots of money for it, and it breaks every time you enter the
wrong input. Would that product be very successful?
Probably not. The user would prefer a handler that addresses
the exception and prompts the user with the issue and
continues functioning.

Exceptions allow for an elegant, consistent
 way of handling errors that may occur throughout execution.

Copyright © 2012, Oracle. All rights reserved.

3

Handling Errors

Exceptions

Exceptions, or run-time errors, should be handled by the
programmer prior to execution.

Handling exceptions involves one of the following:
 •

Try-catch statements
 •

Throw statement

Copyright © 2012, Oracle. All rights reserved.

4

Exceptions and Assertions

Try-Catch Statements

Try-Catch statements are used to handle errors and
exceptions in Java.

In the following code example, the program will run through
the try code block first. In no exception occurs, the
program will continue through the code without executing
the catch block.

try {

InputStream in =

System.out.println("About to open a file");

new FileInputStream("missingfile.txt");

 System.out.println("File open");

} catch (Exception e) {

 System.out.println("Something went wrong!");

 }

Copyright © 2012, Oracle. All rights reserved.

5

Exceptions and Assertions

Try-Catch Statements
 If an exception is found, the program will search for a catch

statement that catches the exception.

In the code segment below, an exception can be expected if the file
“missingfile.txt” does not exist (a reference is being made to a non-
existent object). When the exception occurs, the catch statement is

prepared to handle it by noting the user with “something went
wrong”.
 try {
 System.out.println("About to open a file");

 InputStream in = new FileInputStream("missingfile.txt");

System.out.println("File open");

 } catch (Exception e) {

 System.out.println("Something went wrong!");

 }

Note: If no catch statement is found, and the exception is not handled
 in any other way, your program will crash during run-time.

Copyright © 2012, Oracle. All rights reserved.

6

Exceptions and Assertions

Try-Catch Statements

The action that occurs when the catch statement is reached is
up to the programmer and how s/he decides the program
should operate.

For example, rather than displaying “something went wrong” the
programmer could prompt the user with “File not found, please
provide file name.” With this information, the program will be
able to use another file and attempt to open that one.

try {

 System.out.println("About to open a file");

 InputStream in = new FileInputStream("missingfile.txt");

System.out.println("File open");

 } catch (Exception e) {

 System.out.println("File not found, please provide file
 name");

 //read file name from user input
 }

 Copyright © 2012, Oracle. All rights reserved.

7

Exceptions and Assertions

Using Multiple Catch Statements

You may find that using multiple catch statements is very
effective in making catch statements more specific to the
certain exception that occurs.

Multiple catch statements can be used for one try statement
in order to catch more specific exceptions.

try {

 //try some code that may possibly cause an exception

} catch (FileNotFoundException e) {

 //code that executes when a FileNotFoundException
occurs

 } catch (IOException e) {
 //code that executes when an IOException occurs

 }

Copyright © 2012, Oracle. All rights reserved.

8

Exceptions and Assertions

Using Multiple Catch Statements
 In the code segment below, the try statement is executed first.

There are 2 possible threats for exceptions:
 1. FileNotFoundException - this may occur if “missingfile.txt”
 does not exist
 2. IOException - this may occur if no data is found in
 “missingfile.txt” when the code attempts to access it.

try {

 System.out.println("About to open a file");

InputStream in = new

 FileInputStream("missingfile.txt");

System.out.println("File open");

 int data = in.read(); Threat #2

 in.close();

}

 //continued on next slide

Threat #1

Copyright © 2012, Oracle. All rights reserved.

9

Exceptions and Assertions

Using Multiple Catch Statements

If FileNotFoundException occurs, the first catch statement is
triggered.

If this exception does not occur, the program will continue to
 execute in the try statement until it reaches the IOException threat.
If the IOException occurs, the second catch statement is triggered.

If no exceptions occur, the program will skip over the catch
statements and continue executing the rest of the program.

//continued from previous slide...

 catch (FileNotFoundException e) {
 System.out.println(e.getClass().getName());

System.out.println("Quitting");

 } catch (IOException e) {

 System.out.println(e.getClass().getName());

System.out.println("Quitting");

 }

 Copyright © 2012, Oracle. All rights reserved.

10

Exceptions and Assertions

Finally Clause

Try-Catch statements can optionally include a finally clause
that will always execute if an exception was found or not.
 InputStream in = null;
 try {
 System.out.println("About to open a file");

in = new FileInputStream("missingfile.txt");

System.out.println("File open");

 int data = in.read();
 } catch (IOException e) {

 System.out.println(e.getMessage());

} finally {

 try {

 if(in != null) in.close();

} catch(IOException e) {

 System.out.println("Failed to close file");

 }

 }

Copyright © 2012, Oracle. All rights reserved.

11

Exceptions and Assertions

Auto-closeable Resources

There is a “try-with-resources” statement that will
 automatically close resources if the resources fail. In the
following example, “missingfile.txt” will close if the try
statement completes normally, or if a catch statement is
executed.
 System.out.println("About to open a file");

try (InputStream in =

 new FileInputStream("missingfile.txt")) {

System.out.println("File open");

int data = in.read();

 } catch (FileNotFoundException e) {

 System.out.println(e.getMessage());

} catch (IOException e) {

 System.out.println(e.getMessage());

 }

Copyright © 2012, Oracle. All rights reserved.

12

Exceptions and Assertions

Multi-Catch Statement

There's a multi-catch statement that allows you to catch
multiple exception types in the same catch clause.
 • Each type should be separated with a vertical bar: |

ShoppingCart cart = null;

 try (InputStream is = new FileInputStream(cartFile);

 ObjectInputStream in = new

 ObjectInputStream(is)) {

 cart = (ShoppingCart)in.readObject();
 } catch (ClassNotFoundException | IOException e) {

 System.out.println("Exception deserializing " +

 cartFile);

 System.out.println(e);

System.exit(-1);

 }

Copyright © 2012, Oracle. All rights reserved.

13

Exceptions and Assertions

Declaring Exceptions

Another way to handle an exception is to declare that a
method throws an exception.
 •

A try statement will go in the method declaration.
 •

If the try fails, the method will throw the declared
 exception.

public static int readByteFromFile() throws
IOException {

 try (InputStream in = new
FileInputStream("a.txt")) {

 System.out.println("File open");

return in.read();

 }

 }

Copyright © 2012, Oracle. All rights reserved.

14

Exceptions and Assertions

Handling Declared Exceptions

Method-declared exceptions must still be handled, but can
be handled inside the method declaration OR when the
method is called. Here is an example of handling the
exception when the method from the previous slide is
called.

public static void main(String[] args) {

 try {

 int data = readByteFromFile();

} catch (IOException e) {

 System.out.println(e.getMessage());

 }

 }

Copyright © 2012, Oracle. All rights reserved.

15

Exceptions and Assertions

Creating Custom Exceptions

If you find that no existing exception adequately describes
the exception, you can create your own, custom exceptions

by extending the Exception class or one of its subclasses.

The code may look something like this:
 public class MyException extends Exception {

 public MyException() {

 super();

 //MyException specific code here...
 }

 public MyException(String message) {
 super(message);

 //MyException specific code here...
 }

 //MyException specific code here...

 }

Copyright © 2012, Oracle. All rights reserved.

16

