Queues, Deques
and Priority Queues

Chapter 10

||||||||||||||

Data Structu_ res
and Abstractions

with
Java FRANK M. CARRANO

“E RN A

Contents

 The ADT Queue

= A Problem Solved: Simulating a Waiting Line

= A Problem Solved: Computing the Capital
Gain in a Sale of Stock

= Java Class Library: The Interface Queue

Contents

 The ADT Deque

= A Problem Solved: Computing the Capital
Gain in a Sale of Stock

= Java Class Library: The Interface Deque
= Java Class Library: The Class ArrayDeque

 The ADT Priority Queue

= A Problem Solved: Tracking Your
Assignments

= Java Class Library: The Class
PriorityQueue

Objectives

Describe operations of ADT queue
Jse gueue to simulate waiting line

Jse gueue In program that organizes data
In first-in, first-out manner

Describe operations of ADT deque

Objectives

* Use deque in program that organizes data
chronologically and can operate on both
oldest and newest entries

* Describe operations of ADT priority queue

» Use priority gueue in program that
organizes data objects according to
priorities

Queue

» Another name for a waiting line
= Used within operating systems
= Simulate real world events
= First in, first out (FIFO)
» Consider double ended queue (deque)
= Possible to manipulate both ends of queue

 When multiple queues exist, priority can
be established

.....

Figure 10-1 Some everyday queues

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Abstract Data Type: Queue

* A collection of objects in chronological
order and having the same data type
* Operations

= enqueue(newEntry)
= dequeuel()

Note: Code listing files
- getFrontO must be in same folder
as PowerPoint files
n iSEmpty() for links to work
= clear()

* Interface for Queue, Listing 10-1

Chapter10-code_listings.htm#Listing 10-1

(a) Jim

(b) (Jim) (Jess)

(c) (Jim)C Jess)(Jill)

(d) (Jim)(Jess)(1l) (Jane)

Figure 10-2 A queue of strings after (a) enqueue adds Jim;
(b) enqueue adds Jess; (c) enqueue adds Jill;
(d) enqueue adds Jane;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

(e) C Jim) C Jess)C Iill)(Jane)(Joe)
(f) @ (Jess) (Till)(Jane) (Joe)
(2) (Jess)(Jill) (Jane) (Joe) C Jerry)

(h) (Jill)(Jane)(Joe)(Jerry)

Figure 10-2 A queue of strings after (e) engueue
adds Joe; (f) dequeue retrieves and removes Jim; (g) engueue
adds Jerry; (h) dequeue retrieves and removes Jess;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 1 After the following nine statements execute, what string is at the
front of the queue and what string is at the back?

Queuelnterface<String> myQueue = new LinkedQueue<String>();
myQueue.enqueue("Jim");

myQueue.enqueue("Jess");

myQueue.enqueue("Jill");

myQueue.enqueue("Jane");

String name = myQueue.dequeue();

myQueue.enqueue(name);
myQueue.enqueue(myQueue.getFront());

name = myQueue.dequeue();

1. Jill 1s at the front, Jess Is at the back.

Simulating a Waiting Line

TICKETS

%
WL . SN
1y

Figure 10-3 A line, or queue, of people

Copyright ©2012 by Pearson Education, Inc. All rights reserved

WaltLine

Responsibilities

Simulate customers entering and leaving a

waiting line

Display number served, total wait time,

average wait time, and number left in line

Collaborations

Customer

Figure 10-4 A CRC card for the class WwaitLine

WaitLine

11ne—a queue of customers

numberOfArrival s—number of customers
numberServed—number of customers actually served
totalTimeWaited-total time customers have waited

simulate(duration, arrivalProbability, maxTransactionTime)
displayResults()

Customer

arrivalTime
transactionTime
customerNumber

getArrivalTime()
getTransactionTime()
getCustomerNumber()

Figure 10-5 A diagram of the classes WwaitLine and Customer

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Algorithm for simulate

Algorithm simulate(duration, arrivalProbability, maxTransactionTime)
transactionTimeLeft = 0
for (clock = 0; clock < duration; clock++)

.I.

[

1t (a new customer arrives)

{

}

numberOfArrival s++
transactionTime = a random time that does not exceed maxTransactionTime
nextArrival = a new customer containing clock, transactionTime, and

a customer number that is numberOfArrivals
line.engueue(nextArrival)

if (transactionTimelLeft = 0)

transactionTimeLeft--

else if (!1ine.isEmpty())

{

nextCustomer = line.degueuel)

transactionTimeleft = nextCustomer.getTransactionTime() -1
timeWaited = clock - nextCustomer.getArrivalTime()
totalTimeWaited = totalTimeWaited + timeWaited
numberServed++

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Transaction time left: 5

Customer 1 enters line with a 5-minute transaction.
A1 Customer 1 begins service after waiting 0 minutes.
Time: 0 Wait: 0

Transaction time left: 4

@ /Q Customer 1 continues to be served.

Time: 1
Transaction time lefi: 3
/Q\ Customer 1 continues to be served.
Customer 2 enters line with a 3-minute transaction.
Time: 2

Transaction time left:

@ /Q\ f()\ Customer 1 continues to be served.

Time: 3

Transaction time lefi:
Customer 1 continues to be served.
@ Customer 3 enfers line with a 1-minute transaction.

..n"f“'.i"'nu /")" PRT N LT ST S I bW ¥ Sh W T ST SV S8 JF PN N SN ot N SV N R VT N SN S VY AT AN TN SN VTN ¥ WA N N oF Sauy W S

Figure 10-6 A simulated waiting line

Copyright ©2012 by Pearson Education, Inc. All rights reserved

O FOTTFEEFE F A eead T e TS ad S I GO FE b D bl G b p FT A e p b n e F i ey

Transaction time left: 3

Customer 1 finishes and departs.
@ /{)\ /-q Customer 2 begins service after waiting 3 minutes.
nN2n Customer 4 enters line with a 2-minute transaction.
Time: 5 Wait: 3

Transaction time left: 2

@ /g:)\ fC)\ /_C)\ Customer 2 continues to be served.

Time: 6

Transaction time lefi:

A /ﬁ)\ A /_q Customer 2 continues to be served.
Customer 5 enters line with a 4-minute transaction.
Time: 7

Transaction time left:

Customer 2 finishes and departs.
@ /Q /Q /-C)\ Customer 3 begins service after waiting 4 minutes.
A3N
Time: 8 Wait: 4

Transaction time lefiz 2

4
/_q Customer 3 finishes and departs.
AARN ‘A 5N Customer 4 begins service after waiting 4 minutes.

Time: 9 Wait: 4

Figure 10-6 A simulated waiting line

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 2 Consider the simulation begun In
Figure 10-6.
a. At what time does Customer 4 finish and depart?

b. How long does Customer 5 walit before beginning
the transaction?

2. a.ll.
b. 4.

Class WaitLine

* Implementation of class WaitLine

Listing 10-2
WaitLine customerLine = new WaitLine();
° Statements customerLine.simulate(20, 0.5, 5);

customerLine.displayResults();

» Generate line for 20 minutes
= 50 percent arrival probability
» 5-minute maximum transaction time.

* View sample output

Chapter10-code_listings.htm#Listing 10-2
Chapter10-code_listings.htm#Sample Output Listing 10-2

Computing Capital Gain for
Stock Sale

« Buying n shares at $d
= Then selling — gain or lose money

* We seek a way to

= Record your investment transactions
chronologically

= Compute capital gain of any stock sale.
* We design a class, StockPurchase

StockLedger

Rﬁﬁp@ﬂﬁfﬁ?r‘ﬁtr‘ﬁﬁ

Record the shares of a stock purchased., in

chronological order

Remove the shares of a stock sold, beginning

with the ones held the longest

Compute the capital gain (loss) on shares of a

stock sold

Collaborations

Share of stock

Figure 10-7 A CRC card for the class StockLedger

StockLedger

lTedger—a collection of shares owned, in order of their purchase

buy(sharesBought, pricePerShare)
sel1(sharesSold, pricePerShare)

StockPurchase

cost—cost of one share

getCostPerShare()

Figure 10-8 A diagram of the classes StockLedger
and StockPurchase

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Computing Capital Gain for
Stock Sale

* View class implementation
Listing 10-3

(a)
ey
(b)

Figure 10-9 A queue of (a) individual shares of stock;
(b) grouped shares

Chapter10-code_listings.htm#Listing 10-3

Java Class Library

* |Interface java.util.Queue

public
public
public
public
public
public
public
public
public

boolean add (T newEntry)
boolean offer (T newEntry)
T remove ()

T poll ()

T element ()

T peek()

boolean isEmpty ()

void clear ()

int size()

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Queue.html

ADT Deque

* Need for an ADT which offers

= Add, remove, retrieve
= At both front and back of a queue

* Double ended queue
= Called a deque
= Pronounced “deck”

 Actually behaves more like a double
ended stack

ADT Deque

* Note deque interface,
Listing 10-4

The deque d

d.addToFront(item) d.addToBack(item)
d.removeFront() O O D O d.removeBack()
d.getFront()----""""" _\J\J SIS S d.getBack()

Front Back

Figure 10-10 An instance d of a deque

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter10-code_listings.htm#Listing 10-4

The stack s, queue d, or deque d

(a) Add .push(item) : q.enqueue (item)
d.addToFront(item) 7— d.addToBack(item)

w

Front (top) Back
(b) Remove s.pop()
q.dequeue() OD O O d. removeBack ()
d.removeFront()
Front (top) Back

(c) Retrieve s.peek() ==-ael . ___

q.QEtFIONT < emmnnnn. @ U D O O O- ------ d.getBack()
SN .-

.getFront()

Front (top) Back

FIGURE 10-11 A comparison of operations for a stack s, a
gueue g, and a deque d: (a) add; (b) remove; (c) retrieve

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 3 After the following nine statements execute,
what string is at the front of the deque and what string is at
the back?

Dequelnterface<String> myDeque = new LinkedDeque<String>():

myDeque.addToFront("Jim");

myDeque.addToBack("Jess");

myDeque.addToFront("Jill");

myDeque.addToBack("Jane");

String name = myDeque.getFront();

myDeque.addToBack(name);

myDeque.removeFront();

myDeque.addToFront(myDeque.removeBack());

3. Jill is at the front, Jane Is at the back.

Computing Capital Gain for
Stock Sale

* Revise implementation of class
StockLedger

= Data field 1ledger now an instance of deque
= Note method buy

buy (sharesBought, pricePerShare)
{

StockPurchase purchase = StockPurchase(sharesBought, pricePerShare);
ledger.addToBack(purchase);

}

= View method sell, Listing 10-A

Chapter10-code_listings.htm#Listing 10-A

Java Class Library

* |Interface java.util.Deque

public
public
public
public
public
public
public
public

void addFirst (T newEntry)
boolean offerFirst (T newEntry)
void addLast (T newEntry)
boolean offerlast (T newEntry)
T removeFirst ()

T pollFirst()

T removelast ()

T pollLast()

http://docs.oracle.com/javase/6/docs/api/java/util/Deque.html

Java Class Library

* Interface Deque

public T getFirst()
public T peekFirst()
public T getLast()
Public T peeklLast()
public boolean isEmpty ()
public void clear ()

public int size()

Java Class Library

« Deque extends Queue
* Thus inherits

* add, offer, remove, poll, element, peek

e Adds additional methods
= push, pop

Java Class Library

» Class ArrayDeque

= Implements Deque
* Note — has methods appropriate for
deque, queue, and stack
= Could be used for instances of any of these

* Constructors
= public ArrayDeque ()
= public ArrayDeque (int initialCapacity)

ADT Priority Queue

» Contrast bank gueue and emergency
room queue(s)

« ADT priority gueue organizes objects
according to their priorities

 Note interface, Listing 10-5

Chapter10-code_listings.htm#Listing 10-5

Question 4 After the following statements execute, what
string is at the front of the priority queue and what string is
at the back?

PriorityQueuelnterface<String> myPriorityQueue =

new LinkedPriorityQueue<String>();

myPriorityQueue.add("Jane");

myPriorityQueue.add("Jim");

myPriorityQueue.add("Jill");

String name = myPriorityQueue.remove();

myPriorityQueue.add(name);

myPriorityQueue.add("Jess");

4. Jane Is at the front, Jim Is at the back.

Problem: Tracking Your
Assignments

» Consider tasks assigned with due dates

« We use a priority queue to organize in due
date order

Assignment

course—the course code
task—a description of the assignment
date—the due date

getCourseCode()
getTask()
getDueDate()
compareTo()

Figure 10-12 A diagram of the class Assignment

Tracking Your Assignments

* Note implementation of class
AssignmentLog, Listing 10-6

Assignmentlog

log—a priority queue of assignments

addProject (newAssignment)
addProject(courseCode, task, dueDate)
getNextProject()

removeNextProject()

Figure 10-13 A diagram of the class AssignmentLog

Chapter10-code_listings.htm#Listing 10-6

Java Class Library

» Class PriorityQueue constructors and
methods
» public PriorityQueue ()

» public PriorityQueue (
int initialCapacity)

* public boolean add (T newEntry)

* public boolean offer (T newEntry)
* public T remove ()

" public T poll()

Java Class Library

» Class PriorityQueue methods, ctd.
» public T element ()
" public T peek()
* public boolean isEmpty ()
" public void clear ()

* public int size()

Lab4a StoreSim

» Kind of like the WaitLine example above
« Simpler in terms of data

* The Queue only holds integers
= Representing arrival time for each customer

Lab4a StoreSim

« Each minute, customers Arrive with the
following probability:
= 50% of the time: O people
= 25% of the time: 1 person
= 25% of the time: 2 persons

How to Code It:

Generate random number 0,1,2, or 3

If 0 or 3, numArrivals =0 (nobody came)
If 1, numArrivals =1

If 2, numArrivals = 2

Serving Minute: O

* Queue: (empty)
No customers served

Arrivals Minute: O

e TWO customers arrive

* Queue: [0, O]

Serving

Queue:

Minute: 1

[O]

SerVe customer: A%ue()and store in timeArrived

timeArrived: 0O
customersServed: 1
waitTime: 1
totalWaitTime: 1

Arrivals Minute: 1

e TWO customers arrive

* Queue: [0, 1, 1]

Serving Minute: 2

Queue: [1, 1]
Serve CUStOmer: A%ue()and store in timeArrived
timeArrived: 0O
customersServed: 2
waitTime: 2
totalWaitTime: 3

Arrivals Minute: 2

« One customer arrives

* Queue: [1, 1, 2]

Serving

Queue:
Serve customer:
timeArrived: 1

waitTime: 2

Minute: 3

[1, 2]

A%ueland store in timeArrived

customersServed: 3

totalWaitTime: 5

Arrivals Minute: 3

e TWO customers arrive

* Queue: [1, 2, 3, 3]

Serving Minute: 4

Queue: [2, 3, 3]
Serve CUStOmer: A%ueland store in timeArrived
timeArrived: 1
customersServed: 4
waitTime: 3
totalWaitTime: 8

Arrivals Minute: 4

« No customers arrive

* Queue: [2, 3, 3]

Serving Minute: 5

Queue: [3, 3]
Serve CUStOmer: wnd store in timeArrived
timeArrived: 2
customersServed: 5
waitTime: 3
totalWaitTime: 11

Arrivals Minute: 5

e TWO customers arrive

* Queue: [3, 3, 5, 5]

End

Chapter 10

