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Objectives 

• Assess efficiency of given algorithm 

• Compare expected execution times of two 

methods 

 Given efficiencies of algorithms 
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Motivation, which is better? 

• Contrast algorithms 

Figure 4-1 Three algorithms for computing the sum 1 + 2 + . . . + n  
for an integer n > 0 
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Comparing the arithmetic 
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Motivation 

• Java code for algorithms 

 

 

 

 

 

 

• Even a simple program can be inefficient 
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Measuring an Algorithm’s 

Efficiency 
• Complexity 

 Space and time requirements 

• Other issues for best solution 

 Generality of algorithm 

 Programming effort 

 Problem size – number of items program will 

handle 

 Growth-rate function 
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Counting Basic Operations 

Figure 4-2 The number of basic operations required  
by the algorithms in Figure 4-1 
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Figure 4-3 The number of basic operations required by the algorithms 

in Figure 4-1 as a function of n 
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FIGURE 4-4 Typical growth-rate functions evaluated  

at increasing values of n 
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Best, Worst, and Average 

Cases 
• Some algorithms depend only on size of 

data set 

• Other algorithms depend on nature of the 

data 

 Best case search when item at beginning 

 Worst case when item at end 

 Average case somewhere between 
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Big Oh Notation 

• Notation to describe algorithm complexity 

• Definition 

A function f(n) is of order at most g(n) 

that is, f(n) is O(g(n))—if : 

• A positive real number c and positive 

integer N exist such that                       or 

all n ≥ N.  

• That is,                 is an upper bound on 

f(n) when n is sufficiently large. 
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Figure 4-5 An illustration of the definition of Big Oh 
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Big Oh Identities 

• O(k g(n)) = O(g(n)) for a constant k 

• O(g1(n)) + O(g2(n)) = O(g1(n) + g2(n)) 

• O(g1(n)) x O(g2(n)) = O(g1(n) x g2(n)) 

• O(g1(n) + g2(n) + . . . + gm(n)) =  

O(max(g1(n), g2(n), . . ., gm(n)) 

• O(max(g1(n), g2(n), . . ., gm(n)) = 

max(O(g1(n)), O(g2(n)), . . ., O(gm(n))) 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



Figure 4-6 An O(n) algorithm 
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Figure 4-7 An O(n2) algorithm 
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Figure 4-8 Another O(n2) algorithm 
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Figure 4-9 The effect of doubling the problem size  

on an algorithm’s time requirement 
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Figure 4-10 The time required to process one million items  

by algorithms of various orders at the rate  

of one million operations per second 
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Array Based Implementation 

• Adding an entry to a bag, an  O(1) method,  
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Array Based Implementation 

• Searching for an entry,  O(1) best case,  

O(n) worst or average case  

• Thus an O(n) method overall 
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A Linked Implementation 

• Adding an entry to a bag, an O(1) method,  
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A Linked Implementation 

• Searching a bag for a given entry, O(1) best 

case, O(n) worst case  

• O(n) overall 
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Figure 4-11 The time efficiencies of the ADT bag operations for 

two implementations, expressed in Big Oh notation 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 



End 

Chapter 4 

Copyright ©2012 by Pearson Education, Inc. All rights reserved 


