
The Efficiency of Algorithms

Chapter 4

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Motivation

• Measuring an Algorithm’s Efficiency

 Counting Basic Operations

 Best, Worst, and Average Cases

• Big Oh Notation

 The Complexities of Program Constructs

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Picturing Efficiency

• The Efficiency of Implementations of the

ADT Bag

 An Array-Based Implementation

 A Linked Implementation

 Comparing the Implementations

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Assess efficiency of given algorithm

• Compare expected execution times of two

methods

 Given efficiencies of algorithms

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Motivation, which is better?

• Contrast algorithms

Figure 4-1 Three algorithms for computing the sum 1 + 2 + . . . + n
for an integer n > 0

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Comparing the arithmetic

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Motivation

• Java code for algorithms

• Even a simple program can be inefficient
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Measuring an Algorithm’s

Efficiency
• Complexity

 Space and time requirements

• Other issues for best solution

 Generality of algorithm

 Programming effort

 Problem size – number of items program will

handle

 Growth-rate function

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Counting Basic Operations

Figure 4-2 The number of basic operations required
by the algorithms in Figure 4-1

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 4-3 The number of basic operations required by the algorithms

in Figure 4-1 as a function of n

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 4-4 Typical growth-rate functions evaluated

at increasing values of n

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Best, Worst, and Average

Cases
• Some algorithms depend only on size of

data set

• Other algorithms depend on nature of the

data

 Best case search when item at beginning

 Worst case when item at end

 Average case somewhere between

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Big Oh Notation

• Notation to describe algorithm complexity

• Definition

A function f(n) is of order at most g(n)

that is, f(n) is O(g(n))—if :

• A positive real number c and positive

integer N exist such that or

all n ≥ N.

• That is, is an upper bound on

f(n) when n is sufficiently large.
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 4-5 An illustration of the definition of Big Oh

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Big Oh Identities

• O(k g(n)) = O(g(n)) for a constant k

• O(g1(n)) + O(g2(n)) = O(g1(n) + g2(n))

• O(g1(n)) x O(g2(n)) = O(g1(n) x g2(n))

• O(g1(n) + g2(n) + . . . + gm(n)) =

O(max(g1(n), g2(n), . . ., gm(n))

• O(max(g1(n), g2(n), . . ., gm(n)) =

max(O(g1(n)), O(g2(n)), . . ., O(gm(n)))

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 4-6 An O(n) algorithm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 4-7 An O(n2) algorithm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 4-8 Another O(n2) algorithm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 4-9 The effect of doubling the problem size

on an algorithm’s time requirement

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 4-10 The time required to process one million items

by algorithms of various orders at the rate

of one million operations per second

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Array Based Implementation

• Adding an entry to a bag, an O(1) method,

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Array Based Implementation

• Searching for an entry, O(1) best case,

O(n) worst or average case

• Thus an O(n) method overall

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

A Linked Implementation

• Adding an entry to a bag, an O(1) method,

Copyright ©2012 by Pearson Education, Inc. All rights reserved

A Linked Implementation

• Searching a bag for a given entry, O(1) best

case, O(n) worst case

• O(n) overall

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 4-11 The time efficiencies of the ADT bag operations for

two implementations, expressed in Big Oh notation

Copyright ©2012 by Pearson Education, Inc. All rights reserved

End

Chapter 4

Copyright ©2012 by Pearson Education, Inc. All rights reserved

