The Efficiency of Algorithms

Chapter 4

TTTTTTTTTTTT

Data Structures
and Abstractions

with e
Java FRANK M. CARRANO
R RN e

Copyright ©2012 by Pearson Education, Inc. All rights reserved

e U

Contents

 Motivation

* Measuring an Algorithm’s Efficiency
= Counting Basic Operations
= Best, Worst, and Average Cases
vl * Big Oh Notation
. = The Complexities of Program Constructs

4
s‘_’,‘:

/Py

. il

AL lo-_ T
Contents

* Picturing Efficiency
* The Efficiency of Implementations of the
ADT Bag
= An Array-Based Implementation
= A Linked Implementation
= Comparing the Implementations

Al e T

Objectives

» Assess efficiency of given algorithm

== « Compare expected execution times of two
. methods

L~ = Given efficiencies of algorithms

s R, . N

Motivation, which Is better?

« Contrast algorithms

Algorithm A Algorithm B Algorithm C

sum = 0 sum = 0 sum =n * (n + 1) / 2
for 1 =1 to n for 1 =1+t n
sum = sum + 1 {
for j =1 to 1
sum = sum + 1

Figure 4-1 Three algorithms for computing thesum1+2+...+n
for an integern>0

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Y
LA

Comparing the arithmetic

FIGURE 4-2

The number of basic operations required by the algorithms in

>

Figure 4-1
Alporithm A Alporithm B Algorithm C
Additions 7l nin+1)/2 1
Wultiplications 1
Divisions 1
Total basic operations) (w2 +nm)f2 3

Copyright ©2012 by Pearson Education, Inc. All rights reserved

QQuestion 1 For any positive integer 1, the identity
1+2+...+a=n(1+1)/2

is one that you will encounter while analyzing algorithms. Can you derive it? If you can, you
will not need to memorize it. Hint: Write 1 +2 +.. . +#n. Underit writen + (2 - 1) +. ..+ 1.
Then add the terms from left to right.

Question 2 Can vou derive the values in Figure 4-2? Hint: For Algorithm B, use the iden-
tity given in Question 1.

“
~ T

| 4

peo

-
V4
s

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Ly

If vou follow the hint given in the question, you will get the sum of 7 occurrences of 7 + 1, whichis(m + 1)+ (7 +
1)+...+{n+1). This sumis simply the product /2 {7z + 1). To get this sum, we added 1 + 2 + . . . + i1 to itself. Thus,
p+1yis2 (1+2 +. ..+). The desired conclusion follows immediately from this fact.

Algorithm A: The loop iterates 2 times, so there are 7 additions and a total of 7 + 1 assignments. We ignore the
aszignments.

Algorithm B: For each value of i, the inner loop iterates { times, and so performs / additions and ; assignments.
The outer loop iterates i times. Together, the loops perform 1 + 2 + . . . + 7 additions and the same number of
assignments. Using the identity given in Question 1, the number of additions is# (;7 + 1) / 2. The additional assign-
ment to set sum to zero makes the total number of assignments equal tol + 2 {12+ 1) /2, which we ignore.

e s

/ | Motivation

« Java code for algorithms

long sum = 0O;

sum = n * (n + 1) / 2;
System.out.printin(sum);

v | | | Jgor
for (long i = 1; i <= n; i++ sum ’

iEE (g ! ’) for (Tlong i = 1; 1 <= n; i++)
sum = sum + 1, {

g System.out.printin(sum); for (long j = 1; j <= i; j++)

L sum = sum + 1;

) }

:_'! System.out.printin(sum);

Oy

o

» Even a simple program can be inefficient

Copyright ©2012 by Pearson Education, Inc. All rights reserved

e Lo T

Measuring an Algorlthm S
Efficiency

« Complexity
= Space and time requirements
» Other issues for best solution
= Generality of algorithm

= Programming effort

= Problem size — number of items program will
nandle

= Growth-rate function

"
e

& ==t £

2 5

/- Counting Basic Operations

Algorithm A Algorithm B Algorithm C

- Additions n nn+1)/2 1
s Multiplications 1
it Divisions 1
_:': Total basic operations n (nt+n)l2 3
.
24
wy

=

Figure 4-2 The number of basic operations required
by the algorithms in Figure 4-1

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Algorithm B:
(n* + n) /2 operations

Algorithm A:
n operations

Algorithm C:3 operations

Number of basic operations

Figure 4-3 The number of basic operations required by the algorithms
In Figure 4-1 as a function of n

Copyright ©2012 by Pearson Education, Inc. All rights reserved

n log(logn) logn log2 n n nlogn n n 2" n!

10 2 3 11 10 33 10% 10 | 10° 10°

10% 3 7 44 100 664 104 106 | 1030 10%4

103 3 10 | 99 1000 9966 106 10° | 1039 (I
104 4 13 | 177 | 10,000 132,877 108 1012 | 103010 | 1019335
10° 4 17 | 276 | 100,000 1,660,964 1010 (I T i
108 4 20 | 397 | 1,000,000 | 19,931,569 | 10!2 L e

FIGURE 4-4 Typical growth-rate functions evaluated

at increasing values of n

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Al e T ;'.

Best, Worst, and Average

Cases

« Some algorithms depend only on size of
data set

* Other algorithms depend on nature of the
data

= Best case search when item at beginning
= \Worst case when item at end
= Average case somewhere between

"
e

Wi

Big Oh Notation

Notation to describe algorithm complexity
Definition

A function f(n) is of order at most g(n)
that is, f(n) is O(g(n))—if :

A positive real number ¢ and positive

Integer N exist such that f(n)<c-g(n) or
alln=N.

hatis, c¢-g(n) Is an upper bound on
f(n) when n Is sufficiently large.

Value of growth-rate function

25

15

10

/——*-"'"“ c g(n)
/4——-— f(n)
//
// |
/ |
0 5 N 10 15 20 25 30

Figure 4-5 An illustration of the definition of Big Oh

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Ouestion 3 Show that 31 + 27 is O(2%). What values of ¢ and & did vou use?

)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Wi

ATl e T

Big Oh Identities

* O(k g(n)) = O(g(n)) for a constant k
* O(g1(n)) + O(92(n)) = O(g1l(n) + g2(n))

* 0(g1(n)) x O(g2(n)) = O(g1(n) x g2(n))
* O(91(n) + g2(n) +. ..+ gm(n)) =

O(max(gl(n), g2(n), .. ., gm(n))

 O(max(gl(n), g2(n), ..., gm(n)) =

max(0O(g1(n)), O(g2(n)), . . ., ©O(@m(n)))

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

~3 ™

for 1 = 1 to n
sum = sum + 1

R

1 2 3 i

Figure 4-6 An O(n) algorithm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

‘.\‘

w

for i = 1 ton
{ for j =110 i

sum = sum + 1
}

A

A

R

o

[
(%

3

R

]

O(1+2+..+n)=0(n?

Figure 4-7 An O(n?) algorithm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

for i =1 to n

{ for j=1ten
sum = sum + 1

}

a7l G
al all ta,
A

e i

O(n % n) = O(n?)

X
o '_ﬁ,
R

]

n

Figure 4-8 Another O(n?) algorithm

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question S Using Big Oh notation, what is the order of the following computation’s time
requirement?

for 1 = 1lfon

{
for 1 = 1i0 5%
sum = sum + 1

Copyright ©2012 by Pearson Education, Inc. All rights reserved

5. Theinner loop requires a constant amount of time, and so it is O(1). The outer loop is O(i1), and so the entire com-
putation is O(#1).

Copyright ©2012 by Pearson Education, Inc. All rights reserved

é
b

&

Growth-Rate Function Growth-Rate Function Effect on Time
for Size n Problems for Size 2n Problems Requirement

1 1 None
log n 1+ logn Negligible
n 2n Doubles
nlogn 2nlogn+2n Doubles and then adds 2n
n’ (2n)* Quadruples
n? (2n)° Multiplies by 8
2" S Squares

Figure 4-9 The effect of doubling the problem size
on an algorithm'’s time requirement

Copyright ©2012 by Pearson Education, Inc. All rights reserved

(Question 6 Suppose that vou can solve a problem of a certain size on a given computer in
time { by using an O(2) algorithm. If you double the size of the problem, how fast must your

computer be to solve the problem in the same time?

Question 7 Repeat the previous question, but instead use an O(1?) algorithm.

o

Question & The following algorithm discovers whether an array contains duplicate entries
within its first # elements. What is the Big Oh of this algorithm in the worst case?

Algorifftam hasDuplicates(array, n)
for index = 0fon - 2
for rest = index + 1fon - 1
if (array[index] eguals array[rest])
return true
return false

Copyright ©2012 by Pearson Education, Inc. All rights reserved

6. Twice as fast.
7. Four times as fast.

8. Let’s tabulate the maximum number of times the inner loop executes for various values of index:

index Inner Loop Iterations
0 n-1

1 n-2

2 n-3

n-2 1

Asyou can see, the maximum number of times the inner loop executesis 1+ 2+ ...+ 1 -1, whichisn (n-1) /2.
Thus, the algorithm is D(nzj in the worst caze.

s

=

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Growth-Rate
Function g

log n
n

nlogn
2

3

n

I
2ﬂ

g(10%) 7 108

0.0000199 seconds

1 second

19.9 seconds
11.6 days
31,709.8 years

103[11,016 years

Figure 4-10 The time required to process one million items
by algorithms of various orders at the rate
of one million operations per second

Copyright ©2012 by Pearson Education, Inc. All rights reserved

s U, .

Array Based Implementation

* Adding an entry to a bag, an O(1) method,

public boolean add(T newEntry)

{
i boolean result = true;
= if GisFul10)
~ {
4‘ result = false;
-7)
AVi4 else
Dy {
- bag[numberOfEntries] = newEntry;
numberQOfEntries++;
}
return result;
}

Copyright ©2012 by Pearson Education, Inc. All rights reserved

cam U Y

-

Array Based Implementation

« Searching for an entry, O(1) best case,
O(n) worst or average case

* Thus an O(n) method overall

private int getIndexOf(T anEntry)
{

int where = -1;
boolean found = false;

for (int index = 0: !found && (index < numberOfEntries): index++)

{
1t (ankEntry.equals(bag[index]))
{
found = true;
where = index:
}
H
return where;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Question 9 What is the Big Oh of the bag’s remove methods? Assume that a fixed-zize
array represents the bag, and use an argument similar to the one we just made for contains.

Question 10 Repeat Question 9, but instead analyze the method getFrequency0f.

Question 11 Repeat Question 9, but instead analyze the method toArray.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

10.
11.

Removing an unspecified entry iz O{1). Removing a particular entry iz O(1) in the best case and O(2) in the worst
and average cases.

Of1n).
O(n).

Copyright ©2012 by Pearson Education, Inc. All rights reserved

e =l n

A Linked Implementation

* Adding an entry to a bag, an O(1) method,

E public boolean add(T newEntry)

= ;

? Node newNode = new Node(newEntry);
.;;; newNode.next = firstNode;

» &

""e firstNode = newNode:

'f;_. numberOfEntries++;

return true;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Al -0 N ' ‘
A Linked Implementation

e

« Searching a bag for a given entry, O(1) best
case, O(n) worst case

5 ° O(n) Overa” public boolean contains(T anEntry)

~ {
LJ boolean found = false;
o Node currentNode = firstNode;
il S
4 while (!found && (currentNode != null))
w N {
;_'ﬂ 1t (anEntry.equals(currentNode.data))
'&‘ found = true;
- else

currentNode = currentNode.next:

}

return found;

}

Copyright ©2012 by Pearson Education, Inc. All rights reserved

(Question 12 What is the Big Oh of the method contains when it searches for an entry that
iz not in the bag? Assume that a chain of linked nodes represents the bag.

(Question 13 What is the Big Oh of the bag’s remove methods? Assume that a chain of linked
nodes represents the bag, and use an argument similar to the one you just made for contains.

Question 14 Repeat Question 13, but instead analyze the method getFrequencydf.

QQuestion 15 Repeat Question 13, but instead analyze the method tokrray.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

12.
13.

14.
15.

Qfn).

Removing an unspecified entry is O(1). Removing a particular entry iz O(1) in the best case and O(#7) in the worsl
and average cases.

Q(1).
Of1).

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Operation Fixed-Size Array Linked
add(newEntry) O(1) 0(1)
remove () O(1) O(1)
remove (anEntry) 0O(1),0(n), O(n) | O(1), O(n), O(n)
clear() O(n) O(n)
getFrequencyOf(anEntry) O(n) O(n)
contains(ankntry) 0(1),0(n), O(n) | O(1), O(n), O(n)
toArray() O(n) O(n)
getCurrentSize(), isEmpty(), isFull() O(1) 0(1)

Figure 4-11 The time efficiencies of the ADT bag operations for
two implementations, expressed in Big Oh notation

Copyright ©2012 by Pearson Education, Inc. All rights reserved

End

Chapter 4

Copyright ©2012 by Pearson Education, Inc. All rights reserved

