
Java Arrays (review)
Linked Lists (preview)

1

Array Agenda

● What is an array

● Declaration of an array

● Instantiation of an array

● Accessing array element

● Array length

 ● Multi-dimensional array

2

What is an Array?

3

Introduction to Arrays

● Suppose we have here three variables of type int with
 different identifiers for each variable.

int number1;

 int number2;
int number3;

number1 = 1;
number2 = 2;
number3 = 3;

As you can see, it seems like a tedious task in order to just
initialize and use the variables especially if they are used for
the same purpose.

4

Introduction to Arrays

● In Java and other programming languages, there is one
 capability wherein we can use one variable to store a list of

data and manipulate them more efficiently. This type of
variable is called an array.

● An array stores multiple data items of the same data type, in
 a contiguous block of memory, divided into a number of
 slots.

5

Declaration of
 an Array

6

Declaring Arrays

● To declare an array, write the data type, followed by a set of
 square brackets[], followed by the identifier name.

● For example,
 int []ages;

 or
 int ages[];

7

Instantiation of
 an Array

8

Array Instantiation

● After declaring, we must create the array and specify its
 length with a constructor statement.

● Definitions:

- Instantiation

● In Java, this means creation

- Constructor

● In order to instantiate an object, we need to use a constructor for this. A
 constructor is a method that is called to create a certain object.

● We will cover more about instantiating objects and constructors later.

9

Array Instantiation

● To instantiate (or create) an array, write the new keyword,
 followed by the square brackets containing the number of
 elements you want the array to have.

● For example,
 //declaration

int ages[];

//instantiate object
ages = new int[100];

or, can also be written as,
 //declare and instantiate object

int ages[] = new int[100];

10

Array Instantiation

11

Array Instantiation

● You can also instantiate an array by directly initializing it with
 data.

● For example,
 int arr[] = {1, 2, 3, 4, 5};

This statement declares and instantiates an array of integers
with five elements (initialized to the values 1, 2, 3, 4, and 5).

12

Sample Program
 1

//creates an array of boolean variables with identifier

 2

//results. This array contains 4 elements that are

 3

//initialized to values {true, false, true, false}

 4

 5

boolean results[] = { true, false, true, false };

 6

 7

//creates an array of 4 double variables initialized

 8

//to the values

{100, 90, 80, 75};

 9

 10

double []grades = {100, 90, 80, 75};

 11

 12

//creates an array of Strings with identifier days and

 13

//initialized. This array contains 7 elements

 14

 15

String days[] = { “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”,

 “Sun”};

13

Accessing Array
 Element

14

Accessing an Array Element

● To access an array element, or a part of the array, you use
 a number called an index or a subscript .

● index number or subscript
 - assigned to each member of the array, to allow the program to

 access an individual member of the array.

- begins with zero and progress sequentially by whole numbers to the

 end of the array.

- NOTE: Elements inside your array are from 0 to (sizeOfArray-1).

15

Accessing an Array Element

● For example, given the array we declared a while ago, we
 have
 //assigns 10 to the first element in the array

ages[0] = 10;

//prints the last element in the array
System.out.print(ages[99]);

16

Accessing an Array Element

● NOTE:

- once an array is declared and constructed, the stored value of each

 member of the array will be initialized to zero for number data.

- for reference data types such as Strings, they are NOT initialized to

 blanks or an empty string “”. Therefore, you must populate the String

 arrays explicitly.

17

Accessing an Array Element

● The following is a sample code on how to print all the
 elements in the array. This uses a for loop, so our code is

shorter.
 1

public class ArraySample{

 2

public static void main(String[] args){

 3

int[] ages = new int[100];

 4

for(int i=0; i<100; i++){

 5

System.out.print(ages[i]);

 6

}

 7

}

 8

}

18

Coding Guidelines

1. It is usually better to initialize or instantiate the
 array right away after you declare it. For example,

the declaration,

int []arr = new int[100];

is preferred over,

int []arr;

 arr = new int[100];

19

Coding Guidelines

2. The elements of an n-element array have indexes

 from 0 to n-1. Note that there is no array element

 arr[n]! This will result in an array-index-out-of-

 bounds exception.

3. Remember: You cannot resize an array.

20

Array Length

21

Array Length

● In order to get the number of elements in an array, you can
 use the length field of an array.

● The length field of an array returns the size of the array. It
 can be used by writing,
 arrayName.length

22

Array Length
 1

public class ArraySample {

 2

public static void main(String[] args){

 3

int[] ages = new int[100];

 4

 5

for(int i=0; i<ages.length; i++){

 6

System.out.print(ages[i]);

 7

}

 8

}

 9

}

23

Coding Guidelines

1. When creating for loops to process the elements of an
 array, use the array object's length field in the condition
 statement of the for loop. This will allow the loop to adjust
 automatically for different-sized arrays.

2. Declare the sizes of arrays in a Java program using named
 constants to make them easy to change. For example,

final int ARRAY_SIZE = 1000; //declare a constant

int[] ages = new int[ARRAY_SIZE];

24

Multi-Dimensional
 Array

25

Multidimensional Arrays

● Multidimensional arrays are implemented as arrays of
 arrays.

● Multidimensional arrays are declared by appending the
 appropriate number of bracket pairs after the array name.

26

Multidimensional Arrays

● For example,

// integer array 512 x 128 elements
int[][] twoD = new int[512][128];

// character array 8 x 16 x 24

 char[][][] threeD = new char[8][16][24];

// String array 4 rows x 2 columns

 String[][] dogs = {{ "terry", "brown" },
 { "Kristin", "white" },

 { "toby", "gray"},
{ "fido", "black"}
};

27

Multidimensional Arrays

● To access an element in a multidimensional array is just the
 same as accessing the elements in a one dimensional array.

● For example, to access the first element in the first row of
 the array dogs, we write,

System.out.print(dogs[0][0]);

This will print the String "terry" on the screen.

28

Summary

● Arrays

- Definition

- Declaration

- Instantiation and constructors (brief overview - to be discussed
 more later)

- Accessing an element

- The length field

- Multidimensional Arrays

29

Linked Lists Agenda

• Learn about linked lists.

• Get used to thinking about more than one
possible implementation of a data structure.

• Think about the advantages and disadvantages
of different implementations.

2/18/2013

Reading

• Carrano Chapter 3

2/18/2013

Linked lists: the idea

• A linked list is a set of items where each item is
part of a node that may also contain a single
link to another node.

• Allow one to insert, remove and rearrange lists
very efficiently.

2/18/2013

Linked lists: data structure

• A linked list consists of a sequence of nodes connected by
links, plus a header.

• Each node (except the last) has a next node, and each node
(except the first) has a predecessor.

• Each node contains a single data element (object or value),
plus links to the next Node..

ant bat cat

header null link node data next

2/18/2013

head

A Java Class of Nodes

• Nodes for a linked list (of Objects).

 class Node{

 Object data; // data field
 Node next; // next field

 // Constructor

 Node (Object data, Node next) {
 this.data = data;
 this.next = next;
 }

 }

2/18/2013

Node catNode = new Node(“cat”,null);

Node batNode = new Node(“bat”,catNode);

Node antNode = new Node(“ant”,batNode);

Node head = antNode;

ant cat bat

Example of list creation

2/18/2013

antNode batNode catNode

head null

What happens?

• System.out.println(head.data);

• System.out.println(head.next.data);

• System.out.println(head.next.next.data);

• System.out.println(head.next.next.next.data);

2/18/2013

ant bat cat
head

More about linked lists

• The length of a linked list is the number of nodes.

• An empty linked list has no nodes.

• In a linked list:

– We can manipulate the individual elements.

– We can manipulate the links,

• Thus we can change the structure of the linked list!

• This is not possible in an array.

2/18/2013

 // printing with a loop -- List Traversal
 Node p = head;

 while(p!=null)

 {

 System.out.print(p.data + "->");

 p = p.next;

 }

 System.out.println("null");

 // printing with printList method

 printList(head); 2/18/2013

ant bat cat
head

Points to Note

• Last element uses a special link called the null
link.

• Different implementations of linked lists.

• Different forms:

– Linear lists: items in sequential order

– Circular lists: `last’ item linked to `first’.

– Cyclic: `last’ item linked to one of its predecessors.
 4454

– Nodes sometimes drawn: ant

2/18/2013

Memory addresses

2/18/2013

ant

bat

cat

head

null

x504

x504

x268

x268

x420

x420

Memory addresses

2/18/2013

ant

bat

cat

head

null x504

x504 x268

x268 x420

x420

//********* demo 2 Insert a Node “asp" at front
 // 1) create a new node with desired data ("asp")

 // 2) link the next field of newNode with the rest of the list

 // 3) change head to point to the new node

 Node newNode = new Node("asp", null); // 1

 newNode.next = head; // 2

 head = newNode; // 3
2/18/2013

ant bat cat
head

Linked Lists vs. Arrays

• Size of linked list can be variable!

– Arrays have fixed size.

• Re-arrangement of items in a linked list is
(usually) faster.

• Access to elements is slower in a LL.

2/18/2013

asp

//********* demo 3 Insert a Node "rat" in middle
 // 1) make nodeBefore point to the node before insertion point

 // 2) create a new node with desired data

 // 3) set newNode.next to refer to the items after nodeBefore

 // 4) set nodeBefore.next to refer to newNode

 Node nodeBefore = head.next; // 1

 newNode = new Node("rat",null); // 2

 newNode.next = nodeBefore.next; // 3

 nodeBefore.next = newNode; // 4

ant bat cat

head

Pitfalls with Pointers

• You should be aware that programming with
references is very powerful, but can be tricky.

• Aliasing: `If two variables contain references to
the same object, the state of the object can be
modified using one variable’s reference to the
object, and then the altered state can be
observed through the reference in the other
variable.’ (Gosling, Joy, Steele, The Java Language Specification).

 2/18/2013

 //********* demo 4 Remove the Node at the front
 // 1) advance head to the next node in line

 // 2) unreferenced node will be garbage collected

 head = head.next; // 1

2/18/2013

asp ant rat bat

head

cat

//********* demo 5 Remove the Node "bat" from the middle
 // 1) make nodeBefore point to the node before the deletion point

 // 2) set nodeBefore.next to the list following the deletion node

 // 3) the unreferenced node will be garbage collected

 nodeBefore = head.next; // 1

 nodeBefore.next = nodeBefore.next.next; // 2

2/18/2013

ant rat bat

head

cat

//********* demo 6 Change a Node's data, "rat" to "pet”

 head.next.data = "pet";

2/18/2013

ant rat cat
head

//********* demo 7 add and remove a Node after ant

 // first, add a new node after ant ant->trap->pet->cat->null

 // follow steps in demo3

 System.out.println("7) ");

 code here

 printList(head);

 // then remove the node after ant ant->pet->cat->null

 // follow steps in demo4

 code here

 printList(head); 2/18/2013

ant pet cat
head

Null

• The last node of a linked list is a reference, but it is the
null reference that refers to nothing!

• If some operation tries to use the object that the null
ref. points to then an exception is raised (in Java
NullPointerException).

• Not always easy to ensure all of these are caught.

• `I call it my billion-dollar mistake. It was the invention
of the null reference in 1965. … This has led to
innumerable errors, vulnerabilities, and system
crashes, which have probably caused a billion dollars
of pain and damage in the last forty years.’ (Prof. Sir C.A.R.
Hoare)

 2/18/2013

Java LinkedList

• List Interface:

– http://download.oracle.com/javase/1.4.2/docs/ap
i/java/util/List.html

• LinkedList class

– http://download.oracle.com/javase/1.4.2/docs/ap
i/java/util/LinkedList.html

2/18/2013

http://download.oracle.com/javase/1.4.2/docs/api/java/util/List.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/List.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/LinkedList.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/LinkedList.html

