
Stacks

Chapter 5

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Specifications of the ADT Stack

• Interfaces and StackInterface

• How to use Stack methods

• Need for “Wrapper” classes

 And how to use their utility methods

• Using a Stack to Process “postfix” Algebraic Expressions

 Reading a string and extracting “tokens”

 Processing tokens with a stack

• The Program Runtime Stack

• Java Class Library: The Class Stack

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Specifications of a Stack

• Organizes entries according to order

added

• All additions added to one end of stack

 Added to “top”

 Called a “push”

• Access to stack restricted

 Access only top entry

 Remove called a “pop”

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 5-1 Some familiar stacks

Copyright ©2012 by Pearson Education, Inc. All rights reserved

All Stack-capable classes must implement

these methods

Stack Interfacepublic interface StackInterface < T >

{

/** Adds a new entry to the top of this stack.

@param newEntry an object to be added to the stack */

public void push (T newEntry);

/** Removes and returns this stacks top entry.

@return either the object at the top of the stack or, if the

stack is empty before the operation, null */

public T pop ();

/** Retrieves this stacks top entry.

@return either the object at the top of the stack or null if

the stack is empty */

public T peek ();

/** Detects whether this stack is empty.

@return true if the stack is empty */

public boolean isEmpty ();

/** Removes all entries from this stack */

public void clear ();

} // end StackInterface

Copyright ©2012 by Pearson Education, Inc. All rights reserved

What is an Interface?

• Like a class, except none of the methods

defined

 Only “signatures” showing what they take/return

 Uses keyword interface rather than class

 Like a Contract

• If a class satisfies methods in StackInterface

• it can be used interchangeably with any other class

that satisfies method in StackInterface

 Allows multiple implementations for a given ADT,

Copyright ©2012 by Pearson Education, Inc. All rights reserved

BlueJ showing StackInterface

and 2 classes that implement it

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Stack Implementation 1)--

ArrayStack
• For an ArrayStack, we choose to

represent data using an internal array

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Stack Implementation 2)--

LinkedStack
• For a LinkedStack we choose to represent

data using a linked chain of nodes:

• Both approaches have pros and cons
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Interfaces allow flexibility

• If both ArrayStack and LinkedStack

implement StackInterface, we can use

either one in a program that calls for

stacks.

• Depending on our app, one or the other

might perform better.

• Regardless of which we use, all stack

code except instantiation is same

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using Class Stack

• Example usage

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 5-2 A stack of strings after (a) push adds Jim; (b) push adds Jess;

(c) push adds Jill; (d) push adds Jane; (e) push adds Joe; (f) pop

retrieves and removes Joe; (g) pop retrieves and removes Jane

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Do Lab 2B

Practice Problems 1 & 2 Now

Need for Wrapper classes

• Bag or a Stack, List or Queue

 all use an internal array of Object references.

• We can make Bags or Stacks of

 String, Item, Name, Student, etc.

Need for Wrapper classes (2)
• But primitive collections are not allowed:

 Bag<double> Stack<char>

• To get around this, Java provides

 Wrapper classes

• Double, Integer, Boolean, Character, etc

• These classes wrap primitive values in an object

• Provide "autoboxing" and "auto-unboxing" to make

them mostly the same as working with primitives

Static Methods in Wrapper

Classes

• The Wrapper classes provide a wide variety

of "utility" methods for working with

associated primitive counterparts.

 Suppose we have

• char symbol = 'x';

 Character class has methods to tell if a char is a

• alphabetical letter Character.isAlpha(symbol)

• digit Character.isDigit(symbol)

 Integer class has methods to convert String to int

• Integer.parseInt("125"); Integer.parseInt("hello");
Copyright ©2012 by Pearson Education, Inc. All rights reserved

http://docs.oracle.com/javase/7/docs/api/java/lang/Character.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.htmlparseInt(java.lang.String)

Demo this in lab now,

Problems 3 and 4

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using a Stack to Process

Algebraic Expressions
• Algebraic expressions composed of

 Operands (variables, constants)

 Operators (+, -, /, *, ^)

• Operators can be unary or binary

• Different precedence notations

 Infix a + b

 Prefix + a b

 Postfix a b +  we focus on this one

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using a Stack to Process

Algebraic Expressions
• Precedence must be maintained

 Order of operators

 Use of parentheses (must be balanced)

• Use stacks to evaluate parentheses usage

 Scan expression

 Push symbols

 Pop symbols

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 5-3 The contents of a stack during the scan of an expression

that contains (a) balanced delimiters { [()] }

and (b) unbalanced delimiters { [(]) }

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Hardware-level Processing of

Algebraic Expressions
Consider the arithmetic statement in the

assignment statement:

x = a * b + c

Compiler must generate

machine instructions

1. LOAD a

2. MULT b

3. ADD c

4. STORE x

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights
reserved. 0-13-140909-3 24

Note: this is "infix" notation

The operators are

between the operands

Note: this is "infix" notation

The operators are

between the operands

RPN or Postfix Notation

• Most compilers convert an expression in

infix notation to postfix

 the operators are written after the operands

• So a * b + c becomes a b * c +

• Advantage:

 expressions can be written without

parentheses

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights
reserved. 0-13-140909-3 25

Postfix and Prefix Examples

INFIX RPN (POSTFIX) PREFIX

A + B

A * B + C

A * (B + C)

A - (B - (C - D))

A - B - C - D

26

A B * C +
A B C + *

A B C D---

A B-C-D-

+ * A B C
* A + B C

-A-B-C D

---A B C D

A B + + A B

Prefix : Operators come

before the operands

Prefix : Operators come

before the operands

Evaluating RPN Expressions

 2 7 5 6 - - *

 2 7 5 6 - - *

 2 7 -1 - *

 2 7 -1 - * 

"By hand" (Underlining technique):

1. Scan the expression from left to right to find an operator.

2. Locate ("underline") the last two preceding operands

and combine them using this operator.

3. Repeat until the end of the expression is reached.

Example:
2 3 4 + 5 6 - - *

 2 3 4 + 5 6 - - *

2 8 *  2 8 *  16

Evaluating RPN Expressions
By using a stack algorithm

1. Initialize an empty stack

2. Repeat the following until the end of the
expression is encountered

a) Get the next token (const, var, operator) in the
expression

b) Operand – push onto stack
Operator – do the following

i. Pop 2 values from stack

ii. Apply operator to the two values

iii. Push resulting value back onto stack

3. When end of expression encountered, value of
expression is the (only) number left in stack

30

Note: if only 1 value on

stack, this is an invalid

RPN expression

Note: if only 1 value on

stack, this is an invalid

RPN expression

Evaluation

of Postfix

• Note the

changing

status of the

stack

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights
reserved. 0-13-140909-3 31

Other uses of Stacks

• Converting infix expressions to postfix

The Program (Runtime) Stack

FIGURE 5-13 The program stack at three points in time:
(a) when main begins execution; (PC is the program counter)

The Program Stack

FIGURE 5-13 The program stack at three points in time:
(b) when methodA begins execution; (PC is the program counter)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

The Program Stack

FIGURE 5-13 The program stack at three points in time:
(c) when methodB begins execution; (PC is the program counter)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Class Library:
The Interface Stack

• Has a single constructor

 Creates an empty stack

• Remaining methods – differences from our
StackInterface are highlighted
 public T push(T item);

 public T pop();

 public T peek();

 public boolean empty();

Copyright ©2012 by Pearson Education, Inc. All rights reserved

End

Chapter 5

Copyright ©2012 by Pearson Education, Inc. All rights reserved

