
Bags

Chapter 1

Copyright ©2012 by Pearson Education, Inc. All rights reserved

A little more about Lab 1…

• to take us into today's topics

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

GroceryCheckout Arrays

System.out.println("How many items? ");

numItems = keyboard.nextInt(); // enter 4

double [] cost = new double[numItems];

String [] name = new String[numItems];

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

cost

name

After entering data

Enter the name and price:

bread 2.46

Enter the name and price:

butter 4.99

Enter the name and price:

shrimp 8.13

Enter the name and price:

peas 3.33

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

cost

name

GroceryCheckout2 – Only 1 Array

System.out.println("How many items? ");

numItems = keyboard.nextInt(); // enter 4

Item [] shoppingCart = new Item[numItems];

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

shoppingCart

After entering data
Enter the name and price:

bread 2.46

Enter the name and price:

butter 4.99

Enter the name and price:

shrimp 8.13

Enter the name and price:

peas 3.33

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

shoppingCart

Reading Quiz

1. Which of the following is not a

characteristic of a Bag object?
a. A finite collection of objects

b. Items arranged in a ring

c. Items in no particular order

d. May contain duplicate items

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• The Bag

 A Bag’s Behaviors

• Specifying a Bag

 UML Diagram

• Using the ADT Bag

• Using an ADT Is Like Using a Vending

Machine

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Describe the concept of abstract data type

(ADT)

• Describe ADT bag

• Use ADT bag in Java program

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Definition: Bag

• A finite collection of objects

• In no particular order

• May contain duplicate items

Copyright ©2012 by Pearson Education, Inc. All rights reserved

What's in the Bag?

Bag<String> aBag = new Bag<String>();

aBag.add("peas");

aBag.add("carrots");

aBag.add("tofu");

aBag.add("celery");

aBag.remove("tofu");

Copyright ©2012 by Pearson Education, Inc. All rights reserved

aBag

Behaviors

• Determine how many objects in bag

 Full?

 Empty?

• Add, remove objects

• Count duplicates

• Test for specific object

• View all objects

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 1-1 A CRC card for a class Bag

[Class Responsibilities and Collaborations]

Specifying a Bag

• Describe data

• Specify methods for bag’s behaviors

 Name methods

 Choose parameters

 Decide return types

 Write comments

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Design Decisions

• What should the method add do when it

cannot add a new entry?

 Nothing?

 Leave bag unchanged, signal client of

condition?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Design Decisions

• What should happen when an unusual

condition occurs?

 Assume invalid never happens?

 Ignore invalid event?

 Guess at client’s intention?

 Return flag value?

 Return boolean value – success/failure?

 Throw exception?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 1-2 UML notation for the class Bag

Javadoc for Bag class

Javadoc for Bag class (2)

Using ADT Bag

• When you need a Bag to store many

instances of something in your program

 Use the generic <type> designation

• Need a bag of words?

 Bag<String> words = new Bag<String>();

• How about a bag of purchased items?

 Bag<Item> shoppingCart = new Bag<Item>();

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Using ADT Bag (2)

• Adding an item to the shopping cart:

 shoppingCart.add(new Item("bread",2.46));

• Since the add method returns true/false you

could do the following:

if (shoppingCart.add(new Item("bread",2.46)))

 …println("bread was added to cart");

• Remove and save an item from the bag

 Item item = shoppingCart.remove();

Using ADT Bag (3)

• Check how many items in shoppingCart:

…println("your cart has " +

 shoppingCart.getCurrentSize());

• Check if the cart contains "peas"

System.out.println("got peas? " +

 shoppingCart.contains(new Item("peas", 3.33));

Copyright ©2012 by Pearson Education, Inc. All rights reserved

How contains Method works

• The contains method traverses the bag's

internal array (using a for loop)

 returns true if there is an object in the bag's

internal array that matches the target

• "peas" in the previous example.

• Q: How do we know if there's a match

 A: The class of objects we are storing in the bag

must have a properly written equals method

 For shoppingCart, that would be the Item class

 Copyright ©2012 by Pearson Education, Inc. All rights reserved

The (wrong) equals method
• In CSIS10A, you might have written an

equals method for the Item class that looks

something like this (in red):

public class Item

{

 // instance variables

 private String name;

 private double price;

 public boolean equals(Item that) {

 return this.name.equals(that.name) &&

 this.price == that.price ;

 }

}

Unfortunately, this won't work in a

Bag's contains method (read on…)

The (correct) equals method

• For CSIS10B, we have to refine our equals

method definition slightly to allow for a

parameter of type Object.

public class Item

{

 // instance variables

 private String name;

 private double price;

 public boolean equals(Object other) {

 if (other instanceof Item){

 Item that = (Item) other;

 return this.name.equals(that.name) &&

 this.price == that.price ;

 }

 else

 return false;

 }

}

A fuller explanation follows

0) Write the Java signature for the add method based on the previous

UML diagram

Checkpoint 1

Copyright ©2012 by Pearson Education, Inc. All rights reserved

0) Write the Java signature for the add method based on the previous

UML diagram boolean add(T newEntry);

Checkpoint 1

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Checkpoint 2

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Checkpoint 2

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Vending Machine Like An ADT
• Perform only available tasks

• User must understand the tasks

• Cannot access inside of

mechanism

• Usable without knowing inside

implementation

• Inside implementation unknown

to users

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Do Lab 2A Probs 1 & 2

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Java Collections has an official

“Bag” interface, called Set

• The interface Set (import java.util.Set)
 a Set is a Bag that contains only unique entries

 no duplicates

public boolean add(Object newEntry)

public boolean remove(Object anEntry)

public void clear()

public boolean contains(Object anEntry)

public boolean isEmpty()

public int size()

public Object[] toArray()

Copyright ©2012 by Pearson Education, Inc. All rights reserved

http://docs.oracle.com/javase/1.4.2/docs/api/java/util/Set.html

Creating

Classes from

Other Classes

Appendix C

Slides by Steve Armstrong

LeTourneau University

Longview, TX
2007,Prentice Hall

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Appendix C Contents

• Composition
 Generic Types

 Adapters

• Inheritance
 Invoking Constructors from Within Constructors

 Private Fields and Methods of The Base Class

 Overriding, Overloading Methods

 Multiple Inheritance

• Type Compatibility and Base Classes
 The Class Object

 we'll start here

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Inheritance

• A general or base class is first defined

• Then a more specialized class is defined

by …

 Adding to details of the base class

 Revising details of the more general class

• Advantages

 Saves work

 Common properties and behaviors are define

only once for all classes involved

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Inheritance

Fig. 2-2 A hierarchy of classes.

Embodies an

"is a"

relationship

A Wagon "is a" Vehicle

A PowerBoat "is a" Boat

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Inheritance

Fig. 2-3 A hierarchy of student classes.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Private Fields, Methods of Base Class

• Accessing inherited data fields

 Not accessible by name within definition of a method

from another class – including a derived class

 Still they are inherited by the derived class

• Derived classes must use public methods of the

base class

• Note that private methods in a base class are

also unavailable to derived classes

 But usually not a problem – private methods are used

only for utility duties within their class

Inheritance

• The following slides will illustrate Inheritance

by deriving a Student class from our Person

class

 A Student "is a" Person, with a studentNumber

• Notice the Student constructor, toString,

equals method accesses the equivalent

Person class method using super

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Person

Class

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Student

Class
refer to for

Prob 3

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Invoking Constructors from Within

Constructors

• Constructors usually initialize data fields

• In a derived class

 The constructor must call the base class

constructor

• Note use of reserved word super as a

name for the constructor of the base class

 When super is used, it must be the first

action in the derived constructor definition

 Must not use the name of the constructor

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Overriding Methods

• When a derived class defines a method with the

same signature as in base class

 Same name

 Same return type

 Same number, types of parameters

• Objects of the derived class that invoke the

method will use the definition from the derived

class

• It is possible to use super in the derived class

to call an overridden method of the base class

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Overriding Methods

Fig. 2-5 The method toString in CollegeStudent

overrides the method toString in Student

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Overloading a Method

• When the derived class method has

 The same name

 The same return type … but …

 Different number or type of parameters

• Then the derived class has available

 The derived class method … and

 The base class method with the same name

• Java distinguishes between the two

methods due to the different parameters

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Object Types of a Derived Class

• Given :

 Class CollegeStudent,

 Derived from class Student

• Then a CollegeStudent object is also a

Student object

• In general …

An object of a derived class is also an

object of the base class

Question 10 If HighSchoolStudent is a

subclass of Student, can you assign an object of
HighSchoolStudent to a variable of type

Student? Why or why not?

Question 11 Can you assign an object of Student

to a variable of type HighSchoolStudent?

Why or why not?

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

10.

Yes. You can assign an object of a class to a

variable of any ancestor type. An object of
type HighSchoolStudent can do anything

that an object of type Student can do.

11.

No. The Student object does not have all the

behaviors expected of a
HighSchoolStudent object.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

The Class Object

• Every class is a descendant of the class
Object

• Object is the class that is the beginning

of every chain of derived classes

 It is the ancestor of every other class

 Even those defined by the programmer

• http://docs.oracle.com/javase/1.4.2/docs/a

pi/java/lang/Object.html

http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html

Speaking of class Object...

Ancestor of all classes

• defines methods clone(), equals(),

toString(), among others

• all classes automatically derive these

methods from Object

• to be useful, we have to override them so

they work with the details of the class in

which they are defined

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Overriding the equals method
the parameter is class Object, we use a cast to be able to

refer to it as a Name or Student or BankAccount or

whater class we are defining it for.

we can refer to the private data members of that since it

is an object of the same class. Here is equals for Name:

public boolean equals (Object other){

 if (other instanceof Name){

 Name that = (Name) other;

 return this.first.equals(that.first) &&

 this.last.equals(that.last)

}

else return false;

}
Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Overriding versus Overloading
Let's start with the difference between overriding and overloading. With
overriding, you actually redefine the method. You remove its original
implementation and actually replace it with your own. So when you do:

@Override public boolean equals(Object o)

 { ... }

You're actually re-linking your new equals implementation to replace the
one from Object (or whatever superclass that last defined it).
On the other hand, when you do:

public boolean equals(MyClass m)

{ ... }

You're defining an entirely new method because you're defining a method
with the same name, but different parameters. When contains calls equals,
it essentially calls it on a variable of the type Object.

Why equals(Object other) ?
• http://stackoverflow.com/questions/12787947/overriding-object-equals-vs-overloading-it

http://stackoverflow.com/questions/12787947/overriding-object-equals-vs-overloading-it
http://stackoverflow.com/questions/12787947/overriding-object-equals-vs-overloading-it
http://stackoverflow.com/questions/12787947/overriding-object-equals-vs-overloading-it
http://stackoverflow.com/questions/12787947/overriding-object-equals-vs-overloading-it
http://stackoverflow.com/questions/12787947/overriding-object-equals-vs-overloading-it
http://stackoverflow.com/questions/12787947/overriding-object-equals-vs-overloading-it
http://stackoverflow.com/questions/12787947/overriding-object-equals-vs-overloading-it
http://stackoverflow.com/questions/12787947/overriding-object-equals-vs-overloading-it
http://stackoverflow.com/questions/12787947/overriding-object-equals-vs-overloading-it
http://stackoverflow.com/questions/12787947/overriding-object-equals-vs-overloading-it
http://stackoverflow.com/questions/12787947/overriding-object-equals-vs-overloading-it

Question 12 If sue and susan are two

instances of the class Name, what if

statement can decide whether they

represent the same name?

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

12.

if (sue.equals(susan))

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Inheritance vs Composition

• Inheritance is only one way to make

classes from other classes

 Embodies "is-a" relationship between classes

 If "is-a" doesn't apply then can't inherit

• Composition is another way

 Objects of one class are composed of objects

of one or more other classes.

 Embodies a "has-a" relationship

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Composition

• When a class has a data field that is an

instance of another class

• Example – an object of type Student.

Fig. 2-1 A Student object composed of other objects

fig 2-1

A "has a"

relationship

Click to View Source Code

http://tomrebold.com/csis10b/lectures/CD/Chapter02CodeSamples.htm

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Adapters

• Use composition to write a new class

 Has an instance of an existing class as a

data field

 Defines new methods needed for the new

class

• Example – a NickName class adapted

from class Name

 Inside a NickName object is a

Name object to hold the data

Name Class

public class Name

{

 private String first; // first name

 private String last; // last name

 public Name ()

 {

 first = "";

 last = "";

 } // end default constructor

 public void setFirst (String firstName)

 {

 first = firstName;

 } // end set First

 public String getFirst ()

 {

 return first;

 } // end getFirst

 public void setLast (String lastName)

 {

 last = lastName;

 } // end setLast

 public String getLast ()

 {

 return last;

 } // end getLast

} // end class Name

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

public class NickName
{
 private Name nick;
 public NickName ()
 {
 nick = new Name ();
 } // end default constructor

 public void setNickName (String nickName)
 {
 nick.setFirst (nickName);
 } // end setNickName

 public String getNickName ()
 {
 return nick.getFirst ();
 } // end getNickName
} // end NickName

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

NickName Class

Adapter of Name class

Question 5 Write statements that define bob

as an instance of NickName to represent

the nickname Bob. Then, using bob, write

a statement that displays Bob.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

5.

NickName bob = new NickName();

bob.setNickName("Bob");

System.out.println(bob.getNickName());

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Lab 2A Problem 4

• To illustrate the use of Adapter classes,

we can make a Club class as an adapter

for a Bag<Person> objects.

 Avoids the awkwardness of

• Bag<Person> CS_club = new Bag<Person>();

 Lets us write instead

• Club CS_club = new Club();

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

Setting up the Club class

• class Club as an adapter of class Bag<Person>

• The default constructor just creates a new Bag

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

public class Club
{
 private Bag<Person> members; // the set of club members

public Club()
{
 members = new Bag<Person>() ;
}

Other Club class methods

• Most Club class methods will just directly

call methods on the Bag instance variable

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

public boolean isFull()
{
 return members.isFull();
}

Work on Lab 2A

Problems 3 and 4
• Challenge problem: write an intersection

method to compute the items in common

between two Bag objects.

Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved. 0-13-237045-X

aBag bBag

intersectBag

End

Chapter 1

Copyright ©2012 by Pearson Education, Inc. All rights reserved

