
Bag Implementations

that Use Arrays

Chapter 2

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Using a Fixed-Size Array to Implement the

ADT Bag

 An Analogy

 A Group of Core Methods

 Implementing the Core Methods

 Testing the Core Methods

 Implementing More Methods

 Methods That Remove Entries

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Contents

• Using Array Resizing to Implement the

ADT Bag

 Resizing an Array

 A New Implementation of a Bag

• The Pros and Cons of Using an Array to

Implement the ADT Bag

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Objectives

• Implement ADT bag using

 a fixed-size array or

 an array that expanded dynamically

• Discuss advantages and disadvantages of

implementations presented

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Implement with Fixed Size Array

• Define methods specified by previous
interface BagInterface

• Consider use of fixed size array

 Not unlike a classroom with exactly 40 desks

 Numbered from 0 to 39

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 2-1 A classroom that contains desks in fixed

positions

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Adding, Removing Students

• Adding

 Arbitrarily specify consecutively numbered

desks be occupied

 When desk #39 occupied, room is full

• Removing

 What to do when someone in middle of

sequence is removed?

 Move last person there or shift everyone?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Options for removing a Student

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 2-2 UML notation for the class ArrayBag,

including the class’s data fields

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Group of Core Methods

• Do not attempt to define entire class, then

test

• Instead, identify group of core methods

 Define

 Test

 Then finish rest of class

• Note outline, Listing 2-1

Note: Code listing files

must be in same folder

as PowerPoint files

for links to work

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter02-code_listings.htm
Chapter02-code_listings.htm
Chapter02-code_listings.htm

Design Decisions

• When array bag is partially full

 Which array elements should contain entries?

• Options

 Start at element 0 or element 1 ?

 Require elements to be sequential?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 2-3 Adding entries to an array that represents a

bag, whose capacity is six, until it becomes full

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Add Method

• Note: entries in no order

Copyright ©2012 by Pearson Education, Inc. All rights reserved

The entries in a bag have no particular order. Thus, the method add can place a new
entry into a convenient element of the array bag. In the above definition of add, that
element is the one immediately after the last element used.

Figure 2-4A An array of objects the way we like to think of them,

where each cell "holds" the object (not true though!)

Copyright ©2012 by Pearson Education, Inc. All rights reserved

A convenient way to think
about an Array of objects

index

bag

value

Figure 2-4B An array of objects ACTUALLY contains references

to those objects not the objects themselves. Each cell holds a

location in memory where the object can be found.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

How Java actually represents
an array of objects

index

location

null

Draw a memory map of the

following ArrayBag object
Bag<String> aBag = new ArrayBag<String>();

aBag.add("peas");

aBag.add("tofu");

aBag.add("carrots");

aBag.add("celery");

aBag.remove("tofu");

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Method isFull

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Method toArray

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Design Decisions

• Should toArray return the array bag or a

copy?

 Best to return a copy … think about why.

• Temporarily make stub methods for testing

at this stage

• View test program, Listing 2-2

 Output

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Chapter02-code_listings.htm
Chapter02-code_listings.htm
Chapter02-code_listings.htm
Chapter02-code_listings.htm

More Methods

• Methods isEmpty and getCurrentSize

Copyright ©2012 by Pearson Education, Inc. All rights reserved

More Methods

• Method getFrequencyOf

Copyright ©2012 by Pearson Education, Inc. All rights reserved

More Methods

• Method contains

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Methods That Remove Entries

• Method clear

 Remove all entries

• Remove last

entry in bag

 How could

this be more

efficient?

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 2-5 The array bag after a successful search

for the string "Alice"

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Method to remove a specified entry
First, have to locate the index of the desired entry

Figure 2-6 (a) A gap in the array bag after setting the entry in

bag[index] to null; (b) the array after shifting subsequent

entries to avoid a gap
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Once index is found, remove and shift values above to fill gap

Figure 2-7 Avoiding a gap in the array while removing an entry

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Or, move the last value into the gap

Methods That Remove Entries

• Method to remove a specified entry

 Assumes presence of private getIndexOf

method and private removeEntry method

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Finding the index of anEntry

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Removing Entry at givenIndex

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Resizing Array

• Need to accommodate more elements

than originally specified for bag

Figure 2-8 Resizing an array copies its contents
to a larger second array

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 2-9 (a) An array; (b) two references to the same array;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 2-9 (a) An array; (b) two references to the same array; (c) the
original array variable now references a new, larger array;

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Figure 2-9 (d) the entries in the original array are copied to the new
array; (e) the original array is discarded

Copyright ©2012 by Pearson Education, Inc. All rights reserved

FIGURE 2-10 The effect of the statement myArray =

Arrays.copyOf (myArray, 2 * myArray.length);

(a) The argument array; (b) the parameter that references the

argument array; (c) a new, larger array that gets the contents of the

argument array; (d) the return value that references the new array;

(e) the argument variable is assigned the return value
Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

A New Implementation of a Bag

• Change name of class to

ResizableArrayBag, distinguish between

implementations.

• Remove modifier final from declaration of

array bag to enable resizing.

• Change the name of constant

DEFAULT_CAPACITY to
DEFAULT_INITIAL_CAPACITY.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

A New Implementation of a Bag

• Although unnecessary, change clarifies

new purpose of constant,

 Bag’s capacity will increase as necessary.

 Make same change in default constructor

• Change names of constructors to match

new class name.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Copyright ©2012 by Pearson Education, Inc. All rights reserved

A New Implementation of a Bag

• Revise definition of method add to always

accommodate new entry.

 Method will never return false.

• Revise definition of method isFull to

always return false.

 A bag will never become full.

Copyright ©2012 by Pearson Education, Inc. All rights reserved

A New Implementation of a Bag

• New add

method

 Assumes method ensureCapacity

Copyright ©2012 by Pearson Education, Inc. All rights reserved

Some thoughts on ArrayBag's

Copyright ©2012 by Pearson Education, Inc. All rights reserved

End

Chapter 2

Copyright ©2012 by Pearson Education, Inc. All rights reserved

