
OBJECTIVES

In this laboratory you

• create an implementation of the Weighted Graph ADT using a vertex list and an adjacency
matrix.

• add vertex coloring and implement a method that checks whether a graph has a proper color­
ing.

• develop a routine that finds the least costly (or shortest) path between each pair of vertices in
a graph.

• investigate the Four-Color Theorem by generating a graph for which no proper coloring can
be created using less than five colors.

OVERVIEW

Many relationships cannot be expressed easily using either a linear or a hierarchical data
structure. The relationship between the cities connected by a highway network is one such
relationship. Although it is possible for the roads in a highway network to describe a rela­
tionship between cities that is linear (a one-way street, for example) or hierarchical (an
expressway and its off-ramps, for instance), we all have driven in circles enough times to know
that most highway networks are neither linear nor hierarchical. What we need is a data
structure that lets us connect each city to any of the other cities in the network. This type of
data structure is referred to as a graph.

Like a tree, a graph consists of a set of nodes (called vertices) and a set of edges. Unlike a tree,
an edge in a graph can connect any pair of vertices, not simply a parent and its child. The fol­
lowing graph represents a simple highway network.

LABORATORY 14

Each vertex in the graph has a unique label that denotes a particular city. Ea b edge ha a
weight that denotes the cost (measured in te.rms of distan. e, time or money) of travel'sing th
corresponding road. Note that the edges in the graph ar undirected; that i I if there i an ed e
C011Dectin6 a pair f vertices A and B, this edge can be u ed to move either from to B, or from
B to . Th r ulting weighted, undirected graph express s the cost of traveling bet\.veen citi
u ing the roads in tb highway network. In this laboratory, the focus is on the implementation
and application of weighted, undirected graphs.

Weighted Graph ADT
Elements

Each vertex in a graph has a label (of type String) that uniquely identifies it. Vertices may
include additional data.

Structure

The relationship between the vertices in a graph are xpre ed u ing a et of undirected edges,
where each edge connects one pair of vertices. Collectively, the e edges define a symmetric
relation betwe n the vertices. Each edge in a weighted graph has a weight that denotes the cost
f traversin that edge. "hi relationship is represented by an adjacency matrix of size n X n,

where n is th maximum number of vertices allowed in the graph.

Constructors and Methods

WtGraph ()
Precondition:
None.
Postcondition:
Default Constructor. Calls setup, which creates an empty graph. Allocates enough memory
for an adjacency matrix representation of the graph containing DEF _MAX_GRAPH_SIZE (a
constant value) vertices.

WtGraph (int maxNumber
Precondition:
maxNumber> O.
Postcondition:
Constructor. Calls setup, which creates an empty graph. Allocates enough memory for an
adjacency matrix representation of the graph containing maxNumber vertices.

void setup (int maxNumber)

Precondition:

LABORATORY 14

maxNumber > O. A helper method for the constructors. Is declared private since only
WtGraph constructors should call this method.
Postcondition:
Creates an empty graph. Allocates enough memory for an adjacency matrix representation
of the graph containing maxNumber elements.

void insertVertex (Vertex newVertex)

Precondition:
Graph is not full.
Postcondition:
Inserts newVertex into a graph. If the vertex already exists in the graph, then updates it. If
the vertex is new, the entire structure (both the vertex list and the adjacency matrix) is
updated.

void insertEdge (String vl, String v2, int wt)

Precondition:
Graph includes vertices vI and v2.
Postcondition:
Inserts an undirected edge connecting vertices vI and v2 into a graph. The weight of the
edge is wt. If there is already an edge connecting these vertices, then updates the weight of
the edge.

Vertex retrieveVertex (String v)

Precondition:
None.
Postcondition:
Searches a graph for vertex v. If this vertex is found, then returns the vertex's data. Other­
wise, returns null.

int edgeWeight (String vl, String v2
Precondition:
Graph includes vertices vI and v2 .
Postcondition:
Searches a graph for the edge connecting vertices vI and v2. If this edge exists, then returns
the weight of the edge. Otherwise, returns an undefined weight.

void removeVertex (String v

Precondition:
Graph includes vertex v.
Postcondition:
Removes vertex v from a graph.

LABORATORY 14

void removeEdge (String vI, String v2
Precondition:
Graph includes vertices vI and v2.
Postcondition:
Removes the edge connecting vertices vI and v2 from a graph.

void clear (
Precondition:
None.
Postcondition:
Removes all the vertices and edges in a graph.

boolean isEmpty ()
Precondition:
None.
Postcondition:

Returns true if a graph is empty (no vertices). Otherwise, returns false.

boolean isFull ()
Precondition:
None.
Postcondition:
Returns true if a graph is full. Otherwise, returns false .

void showStructure ()
Precondition:
None.
Postcondition:

Outputs a graph with the vertices in array form and the edges in adjacency matrix form
(with their weights) . If the graph is empty, outputs "Empty graph". Note that this operation
is intended for testing/debugging purposes only.

LABORATORY 14

Name

HourlPerjod/SectjoD

Date

You can represent a graph in many ways. In this laboratory, you use an array to store the set of
vertices and an adjacency matrix to store the set of edges. An entry (), k) in an adjacency
matrix contains information on the edge that goes from the vertex with index j to the vertex
with index k. For a weighted graph, each matrix entry contains the weight of the corresponding
edge. A specially chosen weight value is used to indicate edges that are missing from the graph.

The following graph

yields the vertex list and adjacency matrix shown below. A '-' is used to denote an edge that is
missing from the graph.

Vertex List Adjacency Matrix

Index Label From/To a 1 2 3 4

a A a - 50 100 - -

1 B 1 50 - - 93 -

2 C 2 100 - - 112 210

3 D 3 - 93 112 - 87

4 E 4 - - 210 87 -

Vertex A has an array index of 0 and vertex C has an array index of 2. The weight of the edge from vertex
A to vertex C is therefore stored in entry (0, 2) in the adjacency matrix.

LABORATORY 14

tep : Implement the or ratiOll in the Weighted Graph ADT using an array to tore the ver­
tl e. (vertexList) and an adjacen matrix to store th edge (adjMatrix) . The number of verti­
ee in a graph is n t fix d; theJ·efore, you n eed t store the actual number of vertice ill th
raph (size). Remember that in Java the size of the array i held in a constant called length in

the ~Irra. bject. Theref re in Java a separate variable (such as maxSize i not n cessary, sine
the maximwn Ilumber of elements our graph can h old can be determined by referencing
length-ID re SI eCificall y in our ca e, vertexList. length.

Base y Uf impJem ntation on the f llow.ing incomplete defmiti 11 fr 111 th file WtOm:ph .. i hl.
The alas' Vertex (for the vertexList) is defined in the file VeTtecc.java . You are to fill in the Java
code f r aoh of th onstructors and meth d. where only th method h ead rs are given . Ea h
method header appear on a line by it elf and d not contain a emicol ll. Thi. i not an
interface ftle so a ~ micolon should n t app ar at the eod of a method header. Each of these
meth cis needs to be fully implem " nted b r wJiting th body of code f r implementing that par­
ticular mcth d and en losing the b dy f that method in braces.

public class Vertex
{

/1 Data members
private String label;

II constructor
public Vertex (String name
{

label = name;

II Class methods
public String getLabel(
{

return label;

II class Vertex

II Vertex label

public class WtGraph
{

/1 Default number o£ vertices (a constant)
public final int DEF_MAX_GRAPH_SIZE = 10;
II "Weight " of a missing edge (a constant) - the max lot value
public static final int INFINITE_EDGE...:WI' = Integer.MAX_VALUE;

II Data members
private int size;
private Vertex [vertexList;
private int [1 [1 adjMatrix;

II Actual number of vertices in the graph
/ I Vertex list
II Adjacency matrix (a 2D array)

LABORATORY 14

II ---- - -The following are Method Headers ONLY ------ II
II each of these methods needs to be fully implemented

II Constructors
public WtGraph (
public WtGraph (int maxNumber)

II Class methods
private void setUp (int maxNumber

II Graph manipulation methods
public void insertVertex (Vertex newVertex
public void insertEdge (String vl, String v2, int wt
public Vertex retrieveVertex (String v)
public int edgeWeight (String vl, String v2)
public void removeVertex (String v)
public void remove Edge (String vl, String v2)
public void clear ()

II Graph status methods
public boolean isEmpty (
public boolean isFull ()

II Called by constructors

II Insert vertex
)11 Insert edge
II Get vertex
// Get edge wt
/1 Remove vertex
/ / Remove edge
/1 Clear graph

// Is graph empty?
// Is graph full?

II Output the graph structure - used in testing Idebugging
public void showStructure ()

II Facilitator methods
private int index (String v)

private int get Edge (int row, int col)

private void setEdge (int row, int col , int wt)

// class WtGraph

// Converts vertex label to an
1/
II
//
/1
/ /

adjacency matrix index
Get edge weight using
adjacency matrix indices

Set edge wt using
adjacency matrix indices

Your implementations of the public methods should use your getEdge () and setEdge () facili­
tator methods to access entries in the adjacency matrix. For example, the assignment
statement

setEdge(2, 3, 100) ;

uses the setEdge () method to assign a weight of 100 to the entry in the second row, third
column of the adjacency matrix and the if statement

if (getEdge(j, k) == WtGraph.INFINITE_EDGE_ WT)
System.out.println("Edge is missing from graph");

uses the getEdge () method to test whether there is an edge connecting the vertex with index j

and the vertex with index k.

Step 2: Save your implementation of the Weighted Graph ADT in the file WtGraph.java. Be
sure to document your code.

LABORATORY 14

Name

HourfPeriodLSectio]]

Date

Check with your instructor as to whether you are to complete this exercise prior to your
lab period or during lab.

The test program in the file TestWtGraph.java allows you to interactively test your implemen­
tation of the Weighted Graph ADT using the following commands.

Command Action

+v Insert vertex v .

=v w wt Insert an edge connecting vertices v and w. The weight of this edge is wt.

?v Retrieve vertex v .

#v w Retrieve the edge connecting vertices v and wand output its weight.

- v Remove vertex v .

!v w Remove the edge connecting vertices v and w.

E Report whether the graph is empty.

F Report whether the graph is full.

c Clear the graph.

Q Quit the test program.

Note that v and w denote vertex labels (of type String) not individual characters (of type char).

As a result, you must be careful to enter these commands using the exact format shown above­
including spaces.

Step : PI' par a te t plan for your implementation of the Weighted Graph ADT. Your test
plan houlcl cover graph in which the vertices are connected in a variety of ways . Be sure to
in lude test cases that attempt to retrieve edges that do not exist or that connect nonexistent
vertice . test plan form follows.

LABORATORY 14

Name

Hour/period/Section

Date

A communications network consists of a set of switching centers (vertices) and a set of commu­
nications lines (edges) that connect these centers. When designing a network, a communica­
tions company needs to know whether the resulting network will continue to support
communications between all centers should one of these communications lines be rendered
inoperative due to weather or equipment failure. That is, they need to know the answer to the
follOWing question:

Given a graph in which there is a path from every vertex to every other vertex, will
removing any edge from the graph always produce a graph in which there is still a path
from every vertex to every other vertex?

Obviously, the answer to this question depends on the graph. The answer for the graph shown
below is yes.

On the other hand, you can divide the follOWing graph into two disconnected subgraphs by
removing the edge connecting vertices D and E. Thus, for this graph the answer is no.

LABORATORY 14

Although determining an answer to this question for an arbitrary graph is somewhat difficult,
there are certain classes of graphs for which the answer is always yes. Given the following defi­
nitions, a rule can be derived using simple graph theory.

• A graph G is said to be connected if there exists a path from every vertex in G to every other
vertex in G.

• The degree of a vertex V in a graph G is the number of edges in G that connect to V, where an
edge from V to itself counts twice.

The rule states:

If all of the vertices in a connected graph are of even degree, then removing anyone edge
from the graph will always produce a connected graph.

If this rule applies to a graph, then you know that the answer to the previous question is yes for
that graph. Note that this rule tells you nothing about connected graphs in which the degree of
one or more vertices is odd.

The following Weighted Graph ADT operation checks whether every vertex in a graph is of even
degree.

boolean allEven ()
Precondition:
The graph is connected.
Postcondition:
Returns true if every vertex in a graph is of even degree. Otherwise, returns false.

Step 1: Implement the allEven operation described above and add it to the file WtGraph.java .

Step 2: Save the file TestWtGraph.java as TestWtGraph2.java. Revise the TestWtGraph class
name accordingly. Activate the 'D' (degree) test in the test program TestWtGraph2.java by
removing the comment delimiter (and the character 'D') from the lines that begin with" / /D".

Step 3: Prepare a test plan for this operation that includes graphs in which the vertices are
connected in a variety of ways. A test plan form follows.

LABORATORY 14

Name

Hour/Peri od/Sectjon

Date

Suppose you wish to create a road map of a particular highway network. In order to avoid
causing confusion among map users, you must be careful to color the cities in such a way that
no cities sharing a common border also share the same color. An assignment of colors to cities
that meets this criteria is called a proper colming of the map.

Restating this problem in terms of a graph, we say that an assignment of colors to the vertices in
a graph is a proper coloring of the graph if no vertex is assigned the same color as an adjacent
vertex. The assignment of colors (gray and white) shown in the following graph is an example of
a proper coloring.

1\vo colors are not always enough to produce a proper coloring. One of the most famous the­
orems in graph theory, the Four-Color Theorem, states that creating a proper coloring of any
planar graph (that is, any graph that can be drawn on a sheet of paper without having the edges
cross one another) requires using at most four colors. A planar graph that requires four colors is
shown below. Note that if a graph is not planar, you may need to use more than four colors.

LABORATORY 14

The following Weighted Graph ADT operation determines whether a graph has a proper col­
oring.

boolean properColoring ()
Precondition:
All the vertices have been assigned a color.
Postcondition:
Returns true if no vertex in a graph has the same color as an adjacent vertex. Otherwise,
returns false.

Step 1: Add the following data member to the Vertex class definition in the file Vertex.java.

private String color; II Vertex color ("r" for red and so forth)

Also add the necessary methods to modify and access the vertex color.

Step 2: Implement the properColoring operation described above and add it to the file
WtGraph.java.

Step 3: Replace the showStructure () method in the file WtGraph.java with the
showStructure () method that outputs a vertex's color in addition to its label. An implementa­
tion of this showStructure () method is given in the file show14.txt.

Step 4: Save the file TestWtGraph.java as TestWtGraphJ.java. Revise the TestWtGraph class
nam ac ordillgly. Activate the 'pc' (proper coloring) test in the test program
TestWtGraphJ.jav(L by removing the comment delimiter (and the characters 'pc') from the lines
thAt begin with / I pc".

Step 5: Prepare a test plan for the properColoring operation that includes a variety of graphs
and vertex colorings. A test plan form follows.

LABORATORY 14

Name

Hall dPeri od/Sectjon

Date

In many applications of weighted graphs, you need to determine not only whether there is an
edge connecting a pair of vertices, but whether there is a path connecting the vertices . By
extending the concept of an adjacency matrix, you can produce a path matrix in which an
entry U, k) contains the cost of the least costly (or shortest) path from the vertex with index j to
the vertex with index k. The following graph

yields the path matrix shown below.

Vertex List Path Matrix

Index Label From/To 0 1 2 3 4

0 A 0 0 50 100 143 230

1 B 1 50 0 150 93 180

2 C 2 100 150 0 112 199

3 0 3 143 93 112 0 87

4 E 4 230 180 199 87 0

This graph includes a number of paths from vertex A to vertex E. The cost of the least costly
path connecting these vertices is stored in entry (0 , 4) in the path matrix, where 0 is the index
of vertex A and 4 is the index of vertex E. The corresponding path is ABDE.

LABORATORY 14

In creating this path matrix, we have assumed that a path with cost 0 exists from a vertex to
itself (entries of the form (j, j)). This assumption is based on the view that traveling from a
vertex to itself is a nonevent and thus costs nothing. Depending on how you intend to apply the
information in a graph, you may want to use an alternate assumption.

Given the adjacency matrix for a graph, we begin construction of the path matrix by noting that
all edges are paths. These one-edge-Iong paths are combined to form two-edge-Iong paths by
applying the following reasoning.

If there exists a path from a vertex j to a vertex m and
there exists a path from a vertex m to a vertex k,

then there exists a path from vertex j to vertex k.

We can apply this same reasoning to these newly generated paths to form paths consisting of
more and more edges. The key to this process is to enumerate and combine paths in a manner
that is both complete and efficient. One approach to this task is described in the following algo­
rithm, known as Warshall's algorithm. Note that variables j, k, and m refer to vertex indices, not
vertex labels.

Initialize the path matrix so that it is the same as the edge matrix (all edges are paths) .
Create a path with cost 0 from each vertex back to itself.

for (m = 0 ; m < size ; m++)
for (j = 0 ; j < size ; j++)

for (k = 0 ; k < size i k++
if there exists a path from vertex j to vertex m and

there exists a path from vertex m to vertex k,
then add a path from vertex j to vertex k to the path matrix.

This algorithm establishes the existence of paths between vertices but not their costs. Fortu­
nately, by extending the reasoning used above, we can easily determine the costs of the least
costly paths between vertices.

If there exists a path from a vertex j to a vertex m and
there exists a path from a vertex m to a vertex k and
the cost of going from j to m to k is less than entry (j,k) in the path matrix,

then replace entry (j,k) with the sum of entries (j,m) and (m,k).

Incorporating this reasoning into the previous algorithm yields the following algorithm, known
as Floyd's algorithm.

Initialize the path matrix so that it is the same as the edge matrix (all edges are paths) .
Create a path with cost 0 from each vertex back to itself.
for (m = 0 ; m < size ; m++)

for (j = 0 i j < size ; j++)
for (k = 0 i k < size ; k++

If there exists a path from vertex j to vertex m and
there exists a path from vertex m to vertex k and
the sum of entries (j,m) and (m,k) is less than entry (j,k) in the path

matrix,
then replace entry (j,k) with the sum of entries (j,m) and (m,k).

LABORATORY 14

The following Weighted Graph ADT operation computes a graph's path matrix.

void computePaths ()

Precondition:
None.
Postcondition:
Computes a graph's path matrix.

Step 1: Add the data member

private int [1 [1 pathMatrix; II Path matrix (a 2D array)

to the WtGraph class definition in the file WtGraph.java. Revise the WtGraph constructors as
needed.

Step 2: Implement the computePaths method described above and add it to the file
WtGraph.java. You will probably also want to implement facilitator methods for path similar to
those used for edge.

Step 3: Replace the showStructure () method in the :file WtGraph.java with a showStructure ()

method that outputs a graph's path matrix in addition to it vertex llst and adjacency matrix. An
implementation of this showStructure () method is 'iven in the file show14.txt.

tep 4 : Save the file Te, tWtGraph.java a TestWtGraph4.java. Revi e the Te tWtGraph class
name accordin ly. Activate th 'PM (path matrix) te t in the test program Te tWtGraph4.java
by r movin the comment delimiter (and the character ' PM') trom th line that egin with
"I/PM".

Step 5: Prepare a te t plan f r the computePaths operation that includes graphs in which the
vertic s are connected in a variety of wa with a variety of weights . Be ure to include test
ca, es in which an edge between a pair of vertice has a higher co t than a multiedge path
between thc ' e rune vertice, . The edge CE and til path ODE in the graph shown above have
th is pr perty. A t t plan form foHow .

LABORATORY 14

Name

HourlPerj od/Sectj OD

Date

Floyd's algorithm (In-lab Exercise 3) computes the shortest path between each pair of vertices
in a graph. Suppose you need to know not only the cost of the shortest path between a pair of
vertices, but also which vertices lie along this path. At first, it may seem that you need to store
a list of vertices for every entry in the path matrix. Fortunately, you do not need to store this
much information. For each entry U, k) in the path matrix, all you need to know is the index of
the vertex that follows j on the shortest path from j to k-that is, the index of the second vertex
on the shortest path from j to k. The following graph, for example,

yields the augmented path matrix shown below.

Vertex List Path Matrix ((ost I Second Vertex on Shortest Path

Index Label From/To 0 1 2 3 4

0 A 0 010 5011 10012 14311 23011

1 B 1 5010 011 15010 9313 18013

2 (2 10010 15010 012 11213 19913

3 D 3 14311 9311 11212 01 3 8714

4 E 4 23013 18013 19913 8713 014

LABORATORY 14

Entry (0, 4) in this path matrix indicates that the cost of the shortest path from vertex A to
vertex E is 230. It further indicates that vertex B (the vertex with index 1) is the second vertex
on the shortest path. Thus the shortest path is of the form AB ... E.

Explain how you can use this augmented path matrix to list the vertices that lie along the
shortest path between a given pair of vertices.

