
Lab 7 Algorithm Analysis and Sorting

Goal
In this lab you will experiment with timing various sorting methods, writing your own bubble sort method, writing a
compareTo method for a BankAccount class, and sorting a file of BankAccount records by both account number and
balance.

Resources

 Chapters 4, 8 and (optional) 9

Introduction

Sorting data is essential to processing data in that it usually speeds up further processing such as searching for items in

our data. Often sorting IS the processing we wish to perform, for example, ranking a number of items by their value;

Directed Lab Work

Part A Bench Testing Algorithm Efficiency (Speed)

To begin, we will spend some time comparing execution speeds of the 5 different sorting algorithms covered in chapters

8 and 9. The lab7.java file has code that manages generating and scrambling arrays of int or Integer for testing the

algorithms in SortArray.java.

Step 1) Run this program and observe the output. The program currently just tests selectionSort using an array of 30

items. Read through the file and notice how the StopWatch object sw is being used to time the sort. Also note how we

are declaring both int and Integer arrays for testing the algorithms (some require Generic objects, while others require

primitive int). There are several helper methods after main for printing and scrambling arrays of int or Integer.

Step 2) Add statements to reset the copyArray back to sourceArray and time a second sort using insertionSort. Print the

array before and after to verify the sort is working, and show the execution time. You'll notice that the execution speed

for insertionSort is 0! We will need to increase SIZE later but leave it at 30 for now while we continue to verify the sorts

are working properly on a small collection of data.

Step 3) Both selection and insertion sorts are designed to sort int arrays. The remaining sorts are defined to accept

objects of any generic class that provides a compareTo method (note that class Object does not define this method so

arrays of Object cannot be sorted.) This is why sourceArray2 and copyArray2 were defined at the top of main. Add

statements now to perform, verify, and time a third sort using Shell sort on copyArray2.

Step 4) Reset copyArray2 and perform, verify and time a forth sort, Merge sort on copyArray2.

Step 5) Reset copyArray2 and perform, verify and time a fifth sort, Quick sort on copyArray2.

Step 6) Now that you've proven the sorts work properly, we can increase the SIZE of the arrays and record execution

speed for all algorithms as SIZE increases. Open the spreadsheet benchTest.xls in the lab7 folder and fill in the execution

times for the 5 algorithms as SIZE changes from 1000 to 1,000,000. Then plot the 5 curves that result.

To plot the curves, select the table by clicking on SIZE and dragging across the entire table. Choose

Insert>Scatter>Scatter with Smooth Lines and Markers and place the chart next to the table in the spreadsheet.

Which is the best algorithm? Is one of them the winner for all values of SIZE? Why do you think that is?

Part B) Writing your own Selection/Bubble sort
 and Sorting arrays of objects of Comparable<T>

Writing Selection Sort and Bubble Sort Methods

Step 7) Write pseudocode for a selection sort algorithm that selects the largest, instead of the smallest, entry in an

array of integers and sorts the array into descending order. Then make a new version of the selectionSort method in

SortArray, called selectionSortDescending, so that it implements your algorithm. Test your new sort method.

Pseudocode:

Step 8) A bubble sort can sort an array of n entries into ascending order by making n – 1 passes through the array. On

each pass, it compares adjacent entries and swaps them if they are out of order. For example, on the first pass, it

compares the first and second entries, then the second and third entries, and so on. At the end of the first pass, the

largest entry is in its proper position at the end of the array. We say that it has bubbled to its correct spot. Each

subsequent pass ignores the entries at the end of the array, since they are sorted and are larger than any of the

remaining entries. Thus, each pass makes one fewer comparison than the previous pass. See the diagram below for a

visual example of a bubble sort. Implement the bubble sort so it sorts an array of generic objects

You can look at Shell sort to see how sorting generic arrays is handled. Perform time trials on your bubbleSort algorithm

(until it takes about 10 seconds or longer to run) and add the statistics to your spreadsheet.

Sorting Objects of a User Defined Class

Step 9) Sort a file of BankAccount data using your bubble sort algorithm. To do this you will need to define a compareTo

method for the BankAccount class and state that it implements the Comparable<T> interface (Read segment D.18 – D.23

starting on page D.12). Start by reading the code in class BankAccount, BankApp and BankReadFile, which reads a file of

bank account data. Try running BankApp and BankReadFile, noticing the data is read from file bankData.txt. Then, add

statements to the end of BankReadFile that sorts the array of accounts a) by account number and b) by balance.

Sorting by different fields of an Object (a non-standard way)

Sometimes we might want to sort by a BankAccount’s account number, and other times we might want to sort by

balance. The standard Java way to do this is to create a private class that implements Comparator, which isn’t hard, but

requires another class added to your existing class file. Another, perhaps clever, way to handle multiple ways to

compare BankAccount data is to add a private static member compareType to the BankAccount class, and some

public static constants representing the two options for compare. In other words (add the lines in italics):

public class BankAccount implements Comparable<BankAccount>

{

 public static final int COMPARE_ACCOUNT = 0; // value to compare by account

 public static final int COMPARE_BALANCE = 1; // value to compare by balance

 private static int compareType = COMPARE_ACCOUNT; // sets default way all

 // BankAccount objects are compared

private String account; // the account number

private double balance; // the balance associated with account

 ...

}

You would also then set up a static method compareBy inside the BankAccount class that allows the comparison field

to be changed:

public static void compareBy(int compare)

{

 compareType = compare;

}

To change the sorting field for all BankAccount objects to compare by balance you would then say:
 BankAccount.compareBy(BankAccount.COMPARE_BALANCE);

And of course your compareTo method would then have to have an if statement added to it to check before comparing

which field it is supposed to compare. If the compareType is COMPARE_BALANCE it will

 return (int)(100*balance – 100*other.balance); // turn double difference *100 into int

but if the compareType is COMPARE_ACCOUNT it will

 return account.compareTo(other.account); // pass the buck to the String compareTo method

This is a good example of the use of static variables because it shows how they are associated with the entire class of

objects, not an individual instance of an object.

After implementing and testing your compareTo and compareBy methods, call your bubbleSort method to sort the

accounts and display them in sorted order, first by account, then by balance.

Another possibility: you could also add another static variable and extra static mehods to also be able to switch between

ascending and descending comparisons!

Post-Lab Visualization

1) Show the contents of the array of integers 5 7 4 9 8 5 6 3 for each pass of a selection sort while sorting the array

into ascending order.

2) Show the contents of the array of integers 5 7 4 9 8 5 6 3 for each pass of an insertion sort while sorting the

array into ascending order.

