
Lab 6 Linked Bag and List Implementations

Goal

Having constructed array-based classes to represent Bags and Lists in the last lab, we are now going to repeat what we
did last week, only using a chain of linked nodes to represent our Bag and Lists objects. For these exercises you may wish
to refer to the lecture 3 pdf, which illustrates how chains of linked nodes can be manipulated.

Resources

 Chapter 3, and 14

Part A LinkedBag class

The Bag class was introduced in lab 2, and we wrote an ArrayBag class in lab5a. From an abstract point of view, a

LinkedBag is just a Bag (container) we can store objects in. The following Javadoc defines many the exact same methods

we wrote for the ArrayBag class. Today we will build a class according to these specifications, now using linked nodes to

represent the objects in the bag.

Pre-Lab Visualization of the Linked Chain-based Bag

The linked bag will use an internal chain of Node objects to maintain the items in the bag. As we saw in lecture, the

items in the bag will be added to the chain at the beginning/front of the chain. We will still maintain a mySize instance

variable to keep track of how many items the bag contains.

Here is some code that creates one of our simple linked bags:

LinkedBag duffleBag = new LinkedBag();

 duffleBag.add("ball"); duffleBag.add("cap");

 duffleBag.add("mitt"); duffleBag.add("cleat");

Notice we are not using type specifiers in angle brackets again. Like the ArrayBag we made last week this LinkedBag class

uses Object as the data type, which is somewhat riskier but simpler to implement.

A (crude) memory map of the above LinkedBag object might look something like this

LinkedBag Diagram of the duffleBag object

duffleBag

 +----

--->

firstNode
 +--- ------------

 mySize

 4

-----> + +--- ------> + +--- ------> + +--- ------> + null

 | | | |
 V V V V

 cleat mitt cap ball

In other words, duffleBag is a reference to the LinkedBag object, which has an internal Node reference and a mySize

field. The mySize field indicates the total number of nodes in the bag. Because it’s easier to add to the beginning of the

chain we have chosen to always add new items at the front.

Compared to the ArrayBag diagram of duffleBag from last week (see below), the sequence of items in the linked bag

appear reversed; however, logically speaking, both bags represent the same state of the Bag.

Array Bag Diagram (different implementation showing the exact same logical state as the previous diagram)

duffleBag

 +--

--->

myArray
 +---- ------------

 mySize

 4

 0 1 2 3 4 5 6 7 8 etc
-----> + + + + null null null null null null

 | | | |
 V V V V

 ball cap mitt cleat

Using the above as a guide, draw pictures of the two LinkedBags that are formed by the following statements (note that

the add method adds to the beginning of the chain and the remove method removes the last item added):

LinkedBag bag1 = new LinkedBag();

LinkedBag bag2 = new LinkedBag();

 bag1.add("a"); bag1.add("b"); bag1.add ("c"); bag1.add ("d"); bag1.remove();

 bag2.add(bag1.remove()); bag2.add("e");

bag1

bag2

Directed Lab Work

We will now start developing and testing the various methods for the LinkedBag class.The in class demonstration will

show how the following methods are implemented:

constructors(2), isFull, isEmpty, getCurrentSize

Your task will now be to complete the following methods:

add, toString, getFrequencyOf, contains, remove, clear

And, if time permits, 2 optional methods:

remove(anEntry), toArray

Problem 1a: the add method

When the LinkedBag is initially created, firstNode is null and mySize is 0.

LinkedBag Diagram

duffleBag

 +----

--->

firstNode
null

 mySize

 0

After we execute the statement duffleBag.add("ball"); the duffleBag object should undergo the following

changes:

duffleBag

 +----

--->

firstNode
 +--- ------------

 mySize

 1

-----> + null

 |
 V

 ball

And after we execute the statment duffleBag.add("cap"); the duffleBag object should undergo the following

changes:

duffleBag

 +----

--->

firstNode
 +--- ------------

 mySize

 2

-----> + +--- ------> + null

 | |
 V V

 cap ball

With these observations in mind, we can formulate a basic algorithm for the add method that will work whether the bag

is empty or already has items stored in it. Our pictures below will assume there is already a chain of nodes. The add

method should:

a) create newNode as a new Node with data set to newEntry. There is a constructor that will help you do this in

the Node class. After this step the inside of your bag object will look something like this:

b) assign to the next member of newNode the value (address) stored in firstNode. (newNode.next = firstNode)

 This means newNode will refer to the first node (if any) in the chain currently representing the bag.

c) assign to firstNode the value (address) stored in newNode. This means firstNode will now refer to the

newNode, which now refers to the rest of the chain.

 d) add one to mySize so we keep track of the correct number of nodes in the chain.

Recall that the add method is supposed to return true if it was successful and false otherwise. But, could a LinkedBag

ever be full? It would take a long time! Therefore, we are safe in always returning true from this add method. Although

that may seem strange, we are just satisfying the requirements put on us by the documentation that defined how a Bag

is supposed to behave. Go ahead and write your modified definition for add now. Then test your add method in the

Problem1 section of the lab6a test program.

Problem 1b: the toString method

The toString method will require some statements that will step a node reference variable currentNode from the first

node to the last, so it can add the data in each node to a String variable result. This is called a traversal. The following

diagrams illustrate how currentNode starts at the firstNode of the chain and advances to touch each Node.

The currentNode variable will start with the same value (address) as firstNode, allowing us to refer to "soap" using the

expression currentNode.data; Whenever we want to advance currentNode to the next Node we will use the

expression currentNode = currentNode.next; This copies the next field of the node that currentNode refers to into

currentNode, making currentNode now refer to (in this case) the node with "milk" in it.

We can continue to repeat this operation, referring to each node in the chain, until currentNode gets the value null. At

that point, we have reached the end of the chain and must stop the loop.

To begin the toString method, we'll need to create a String result that initially assigned an empty string, or ""; Then, at

each node in the chain we'll add currentNode.data to our result String, with a space in quotes to prepare for the next

item.

Here is the psuedocode for the basic toString method:

 a) define String result as an empty string (that means assign "" to it)

 b) define Node currentNode and give it the initial value firstNode (as shown in the top diagram above)

 c) as long as currentNode is not null (this is a while loop)

 i) add currentNode.data to the end of the result String

 ii) move currentNode to the next node in the chain (see explanation above)

 d) after the loop completes, return the result variable

As an extra challenge, modify your toString so it inserts commas after each item except the last, and encloses the whole

string in square brackets, for example: [soap, milk, coffee, bread, sugar]

Problem 2: the getFrequencyOf method

When the LinkedBag has a few items in it, we may wish to know how many times an item occurs in the bag. For

example, given the following state of our bag,

duffleBag

 +----

--->

firstNode
 +--- ------------

 mySize

 5

-----> + +--- ------> + +--- ------> + +--- ------> + +--- ------> + null

 | | | | |
 V V V V V

 ball keys ball cap ball

The statement duffleBag.getFrequencyOf("ball"); will return the value 3.

Now that you know how to traverse a linked chain of nodes, the getFrequency method will be fairly straightforward.

In order to determine the number of times anEntry occurs in the bag, we’ll need to use a loop with an external counter.

Here is an approach to solving this problem:

1) declare and set numTimes = 0

2) declare a Node reference variable currentNode and set equal to firstNode

3) make currentNode traverse over all the Nodes in the chain until it becomes null (while loop)

a. If the object referred to by currenNode “equals” the anEntry object

i. add one to numTimes

4) after the loop, return the value in numTimes

Write this method now and test it in the lab6a test program.

Problem 3: the contains method

This method returns true if anEntry is stored in the bag. It can be written in one of two ways.

Option 1 is to run through (traverse) the items in the chain using a loop. If there is ever an object in the bag
 that “equals” anEntry, return true. After the loop, just return false (meaning no match was found)

Although option 1 is fine, there is a simpler way. The advantage of writing numerous methods for a class is that some
methods can be written in terms of others. Here is the alternative:

 Option 2 is to just use getFrequencyOf You could simply return the logical expression that getFrequencyOf is
 greater than 0.

Write this method now and test it in the lab6a test program.

Problem 4: the remove method

Suppose our bag at some point looks like the following:

duffleBag

 +----

--->

firstNode
 +--- ------------

 mySize

 5

-----> + +--- ------> + +--- ------> + +--- ------> + +--- ------> + null

 | | | | |
 V V V V V

 ball keys ball cap ball

In the ArrayBag class, we found it easiest to remove the last item in the array. For the LinkedBag class it turns out to be

much easier to remove the first node of the linked chain of nodes. So, the statement duffleBag.remove(); would

make the bag now look like:

duffleBag

 +----

--->

firstNode
 +--- ------------

 mySize

 4

-----> + +--- ------> + +--- ------> + +--- ------> + null

 | | | |
 V V V V

 keys ball cap ball

Notice the changes that have taken place on the dufflebag with the single remove statement. Remember, your method

has to return the entry being removed. To accomplish a remove, we need to create a variable result to refer to the data

in the first node, as shown in this diagram:

Then advance firstNode so it refers to the next node in the chain, like so:

Finally, we simply return the value of result, the data in the node being deleted. Well, it's not quite that simple, because
if the bag is empty, if we do not have any nodes, then we must return a result of null.

Here's the psuedocode for the remove method:

 a) define Object result and initialize it to null (in case the bag has no nodes)

 b) if mySize is greater than 0 (we have something real to return besides null)

 i) assign to result a reference to the data in the node referred to by firstNode

 ii) assign to firstNode the value (address) in the next field of the first node in the chain

 (this makes firstNode point to the second node)

 iii) decrement the value in mySize by one

 c) after the if statement, return the value in result (either null, or a reference to the data field of the first node.

Write this method now and test it in the lab6a test program.

Problem 5: the clear method

The clear method removes all of the items in the array. It could be written in at least two different ways. Come up with
an approach and code it up and test it in problem 5 in the test program.

Problem 6: method remove(anEntry)

There is another method that removes items from the bag. This one requires the user to specify which item to remove.
We can solve this one similarly to how we solved it last week. First, we’ll locate the node containing the item we wish to
remove, then we’ll copy the firstNode’s data over that node’s data. Finally, we’ll remove the first node.

For example, given the following duffleBag object:

duffleBag

 +----

--->

firstNode
 +--- ------------

 mySize

 4

-----> + +--- ------> + +--- ------> + +--- ------> + null

 | | | |
 V V V V

 keys ball cap ball

If we execute the statement duffleBag.remove("cap");

We will first set up a currentNode reference to locate the Node in the chain where anEntry is stored (if at all):

 currentNode
 |
duffleBag

 +----

--->

firstNode
 +--- ------------

 mySize

 4

 V
-----> + +--- ------> + +--- ------> + +--- ------> + null

 | | | |
 V V V V

 keys ball cap ball

Then, we’ll copy firstNode.data into the node where currentNode is referring to.

 currentNode
 |
duffleBag

 +----

--->

firstNode
 +--- ------------

 mySize

 4

 V
-----> + +--- ------> + +--- ------> + +--- ------> + null

 | | | |
 V V V V

 keys ball keys ball

Finally, we’ll remove the first Node, similar to how remove() works (you could actually invoke remove to do this!)

 currentNode
 |
duffleBag

 +----

--->

firstNode
 +--- ------------

 mySize

 3

 V
------- --------- --------- ------> + +--- ------> + +--- ------> + null

 | | |
 V V V

 ball keys ball

Note: we also have to return true or false indicating whether we actually removed an object or not. This will require a
little extra logic to account for. Code up your method and test it now in problem 7 in lab6a.

Problem 7: Converting the LinkedBag to a generic class

We have been using Object as the data type for all of the objects added to the bag, and for the base type of myArray.
Although this approach works as a means to create a working LinkedBag class, it does have some defects. The problem
occurs when we accidently insert something unintended into our Bag, such as an array of String rather than a single
String object. These mistakes would go unnoticed by the compiler and not appear until run time, where they are usually
much harder to find. In order to allow the compiler to flag incorrect insertions into our LinkedBag, we will now make a
simple modification that allows us to specify the data type our LinkedBag can hold.

The steps to do this are: 1) add <T> after the class declaration, and 2) Change all occurences of Object to T in the
remaining code.

Since no arrays are being created, there is no need to use any special warning suppression in the constructor like we did
for the ArrayBag class.

Problem 8: the toArray method

The toArray method is defined incorrectly in our text—it does not need to be cast into an array of T since Java does not
remember what T is for arrays—although the basic idea is correct. The steps are as follows: 1) make a new array of
Object called result that has space for mySize items; 2) write a for loop that copies all the data items from the linked
nodes over into the result array (you may need to cast the data references as Object); and 3) return the result array.
Write your toArray method and then test it in the lab6a program. Note that the toArray method should return Object[]
not T[].

Problem 9: the union method (do Problems 7 & 8 first)

The union method is commented out in the LinkedBag class file because it is written with a parameter of type

BagInterface<T>. You won’t be able to uncomment this method until you complete problems 7 and 8.

Since the union method takes a second BagInterface<T> as a parameter and returns a new BagInterface<T> object

containing the contents of both bags, this is a good time to review the purpose of interfaces.

Interfaces help us manage and define classes that perform similar behaviors. The BagInterface is a like contract that

specifies the methods a class must contain to be considered a Bag.

To make our LinkedBag fully functional, we now add the phrase implements BagInterface<T> to the end of the first

line of the class file: public class LinkedBag<T> implements BagInterface<T> this tells the compiler that our LinkedBag

satisfies the BagInterface contract (and the compiler will make sure it does).

In order for the union method to work effectively it should be able to combine ArrayBag objects with LinkedBag objects

(they are both Bags after all). So we use a BagInterface parameter because that can refer to either an ArrayBag or

LinkedBag object.

Also, if we don’t care if an object variable refers to either an ArrayBag or a LinkedBag, we could declare it as a

BagInterface variable.

To complete this problem,

a) add implements BagInterface<T> to the LinkedBag class definition so that LinkedBag objects can be

referred to with BagInterface variables

b) open the BagInterface file and uncomment the union method prototype

c) define the union method in LinkedBag. This method will

1) create a new bag called result

2) (non-destructively) copy all the items from anotherBag into result

(hint: first dump all the items in anotherBag into a temp array using toArray)

3) (non-destructively) copy all the items from this bag (the host bag) into result

(hint: make a Node currentNode variable to traverse the Nodes in this bag)

4) return result

Write this method now and test it in Problem 9 of lab6a

Part B LinkedList class

The List class was introduced in lab 4 and an ArrayList was developed in lab 5. A List is a container that stores objects in

a particular order, and allows deleting and adding items at any point in the list. The following Javadoc defines the

methods for the LinkedList, which are the same as the ArrayList. Today we will build a class according to these

specifications. Although we will use the generic type specifier T, we will ignore the use of intefaces to keep things

simple.

Pre-lab visualization

A LinedList object will be made of a set of linked nodes, looking very much like the LinkedBag object from part A. The list

created by the following statements,

 LinkedList<String> myList = new LinkedList<String>();

 myList.add("15"); myList.add("25");

 myList.add("35"); myList.add("45");

will look like the following in memory. Note that add now puts items at the end of the chain, not the beginning as in the

LinkedBag class.

myList

 +----

--->

firstNode
 +--- -----------

 mySize

 4

-----> + +--- ------> + +--- ------> + +--- ------> + null

 | | | |
 V V V V

 15 25 35 45

Directed Lab Work

We will now start developing and testing the various methods for the LinkedList class. Since the LinkedList shares many

of the same features as the LinkedBag class, some of the method definitions are the same for both. In these cases (the

constructors(2), isEmpty, getLength, contains, clear, toArray and toString) definitions have already been provided.

Your task will now be to complete and test the following methods:

getEntry(position), add(newEntry), add(position, newEntry), remove(position), replace(position, newEntry)

And, if time permits, 2 optional methods:

getPosition(anEntry), moveToEnd(position)

Problem 1a: the add(newEntry) method (add to end of list)

This method adds an item to the end of the chain of nodes in the list. There are two possible cases for this method:

either the list is empty or it is not. Here are a couple diagrams illustrating these two situations:

ADDING to an EMPTY LIST (set firstNode = newNode) ADDING at END of LIST (traverse lastNode to end)

The general algorithm for adding to the end of this list is

1) construct a new Node referred to by newNode that contains the data to be we wish to add (newEntry)

2) if mySize is 0 (empty list)

a. assign to firstNode the address in newNode

b. add one to mySize

3) otherwise

a. make a variable lastNode and initialize it to firstNode

b. advance lastNode to the end of the list: as long as lastNode.next is not null, advance lastNode to

the next node.

c. assign to lastNode.next the address of the new Node

d. add one to mySize

Problem 1b: the getEntry(position) method

The getEntry method returns the item that sits at position in the list. Remember that our list defines position 1 as the

start of the list. This is not as confusing as with arrays, but we should still keep alert to the location we are moving to.

As an example, for the following situation with myList, if we print the expression myList.getEntry(3) we should see a

“35” on the screen, NOT “45”!!

myList

 +----

--->

firstNode
 +--- -----------

 mySize

 4

-----> + +--- ------> + +--- ------> + +--- ------> + null

 | | | |
 V V V V

 15 25 35 45

Another task that getEntry must perform is to ensure that only legal index values are used to access the data in the list --

a user might accidently execute myList.getEntry(-4) or myList.getEntry(5), both of which are outside the range of

allowable values for index. Should this happen getEntry should return a value of null.

Write this method now (you’ll need to traverse a Node pointer curentNode to the correct node) and verify that your

program prints the correct output. It’s a simple method that just returns the desired data from the bag, or null if the

desired cell is not valid.

Problem 2: the add(position, newEntry) method

This method takes a position and places newEntry at the desired location (remember, list positions start at 1. This

method also returns true if the add was successful (the position was a valid location) and false if the add could not be

performed (the position requested was outside the allowable range of cells in the array—it would’ve created a gap in

the array or gone past the array bounds).

Example 1: if we have the following list defined:

myList

 +----

--->

firstNode
 +--- -----------

 mySize

 4

-----> + +--- ------> + +--- ------> + +--- ------> + null

 | | | |
 V V V V

 15 25 35 45

and we execute myList.add(1,"99"); the result on myList will be to change it as follows:

myList

 +----

--->

firstNode
 +--- -----------

 mySize

 5

-----> + +--- -----> + +--- ------> + +--- ------> + +--- ------> + null

 | | | | |
 V V V V V

 99 15 25 35 45

and the add method would return true, meaning the add was successful. Notice that a new node with 99 has been

inserted at the head of the list.

Example 2: However, if we now execute the statement: myList.add(7"77"); myList will remain unchanged and a

result of false will be returned since this command attempts to write at item 7 in the list, leaving a gap at position 6.

myList

 +----

--->

firstNode
 +--- -----------

 mySize

 5

-----> + +--- -----> + +--- ------> + +--- ------> + +--- ------> + null

 | | | | |
 V V V V V

 99 15 25 35 45

There are two cases for the add at position method: adding to the beginning of the list, and adding after the beginning.

The following diagrams illustrate these two cases:

ADDING TO BEGINNING (of longer list) ADDING TO MIDDLE (works for end too)

Here is an algorithm for adding at a position:

1) construct a new Node referred to by newNode that contains the data to be we wish to add (newEntry)

2) if the newPosition is legal (for a list of 5 entries, this would be positions 1 through 6 (6 appends at end)

a. if the newPosition is at the beginning of the list

i. make newNode’s next pointer refer to the list Node that firstNode points to

ii. assign to firstNode the address in newNode

iii. add one to mySize

iv. return true (success)

b. otherwise (newPosition is somewhere else, deeper in the list)

i. define Node nodeBefore and initialize it to point to the first Node in the chain

ii. use a for loop to advance nodeBefore to the node before the insertion point

(if newPosition is 3, the number of advances is 1)

iii. define nodeAfter and initialize it to the node that comes after nodeBefore

iv. set the next field of newNode so it refers to the nodeAfter node.

v. set the next field of nodeBefore so it refers to the newNode node

vi. add one to mySize

vii. return true (success)

3) otherwise, return false (unsuccessful or illegal insertion point)

Problem 3) remove, replace

Remove saves a reference to the Node that is about to be removed before disconnecting the removed node from the

chain, so it can return the data item it contains when the method finishes.

There are two cases for the remove method: removing the item at the beginning of the list, or removing an item

somewhere after the beginning. The following diagrams illustrate these two situations:

 REMOVING the FIRST ITEM REMOVING SOME OTHER ITEM

Here are the steps to remove an item from a linked list:

1. If the givenPosition is legal (example: 1 to 5 would be legal for a list of 5 items, 0 or 6 would be illegal)

a. if the givenPosition is 1 (first item being removed)

i. define Node nodeToRemove and initialize it to point to the first Node in the chain

ii. advance firstNode to the next node in the chain

iii. return the entry stored in nodeToRemove

b. otherwise (some other position in chain)

i. define nodeBefore similar to how you did for add in problem 2, advancing it to the node just

prior to the one you want to remove

ii. define nodeToRemove and assign it the node after nodeBefore

iii. define nodeAfter and assign it the node after nodeToRemove

iv. rearrange pointers as illustrated in the diagram

v. return the entry stored in nodeToRemove

Replace: Using similar techniques as demonstrated in remove and add, write the replace method (or write the method

in terms of remove and add). If the givenPosition is legal, this method copies over the item in the Node at givenPosition

with a reference to newEntry, and returns true (success). Otherwise it returns false (illegal position).

Problem 4) getPosition, moveToEnd

Note: there are no stubs for these methods so you'll have to add them completely, with javadocs, to the LinkedBag file.

Read the example test code in the Lab6b file to see how these methods are used. The method getPosition should return

the position (remember, we start counting at 1) of an item in the list. If it is not found it should return the flag -1.

the method moveToEnd should move the item at givenPosition to the end of the list.

