
Lab 5 Array based Bag and List Implementations

Goal

Having worked with Bags and Lists in previous labs, we are now going to pull the covers off them and learn how they are
constructed and how they work internally. We will do this by creating our own versions of these classes, using internal
arrays to store the data. Next week we will repeat this exercise using linked Nodes to store the data.

Resources

 Chapter 2, and 13

Part A ArrayBag class

The Bag class was introduced in lab 2. From an abstract point of view, a Bag is just a container we can store objects in.

The following Javadoc defines many of the methods we tried out in lab. Today we will build a class according to these

specifications.

Pre-Lab Visualization

Array-based Bag

The array based bag will use an internal array to maintain the items in the bag. As we saw in lecture, the items in the bag

will be added to the internal array at the location indicated by the the mySize instance variable.

Here is some code that creates one of our simple array based bags:

ArrayBag duffleBag = new ArrayBag();

 duffleBag.add("ball");

 duffleBag.add("cap");

 duffleBag.add("mitt");

 duffleBag.add("cleats");

Notice we are not using type specifiers in angle brackets as we did in our lab experiments. This ArrayBag class is

somewhat simpler than the one we used before.

A (crude) memory map of the above ArrayBag object might look something like this

duffleBag

 +--

--->

myArray
 +---- -----------

 mySize

 4

 0 1 2 3 4 5 6 7 8 etc
-----> + + + + null null null null null null

 | | | |
 V V V V

 ball cap mitt cleats

In other words, duffleBag is a reference to the ArrayBag object, which has an internal array reference and a mySize

field. Note that the mySize field indicates that the next available cell in the array is at index 4.

A simpler memory notation look be something like duffleBag [mySize: 4, myArray:]ball,cap,mitt,cleats

Using the above as a guide, draw pictures of the two ArrayBags that are formed by the following statements (note that

the remove method removes the last item added to the bag):

ArrayBag bag1 = new ArrayBag();

ArrayBag bag2 = new ArrayBag();

 bag1.add("a"); bag1.add("b"); bag1.add ("c"); bag1.add ("d"); bag1.remove();

 bag2.add(bag1.remove()); bag2.add("e");

bag1

bag2

Directed Lab Work

We will now start developing and testing the various methods for the ArrayBag class.The in class demonstration will

show how the following methods are implemented:

constructors(2), isFull, isEmpty, getCurrentSize, toString

Your task will now be to complete the following methods:

add, getFrequencyOf, contains, remove, clear

And, if time permits, 2 optional methods:

remove(anEntry), toArray

Problem 1: the add method

When the ArrayBag is initially created, myArray is filled with null values and mySize is 0.

duffleBag

 +--

--->

myArray
 +---- -----------

 mySize

 0

 0 1 2 3 4 5 6 7 8 etc
-----> null null null null null null null null null null

After we execute the statement duffleBag.add("ball"); the duffleBag object should undergo the following

changes:

duffleBag

 +--

--->

myArray
 +---- -----------

 mySize

 1

 0 1 2 3 4 5 6 7 8 etc
-----> + null null null null null null null null null

 |
 V

 ball

And after we execute the statment duffleBag.add("cap"); the duffleBag object should undergo the following

changes:

duffleBag

 +--

--->

myArray
 +---- -----------

 mySize

 2

 0 1 2 3 4 5 6 7 8 etc
-----> + + null null null null null null null null

 | |
 V V

 ball cap

With these observations in mind, we can formulate a basic algorithm for the add method:

1) store newEntry at location mySize in myArray

2) add 1 to mySize

But what if the bag is full? We should add an if statement to our algorithm to only do the above steps if our bag is NOT

FULL. Also, the add method is supposed to return true if it was successful and false otherwise. Go ahead and write your

modified definition for add now. Then test your method in the Problem1 section of the lab5a test program.

Problem 2: the getFrequencyOf method

When the ArrayBag has a few items in it, we may wish to know how many times an item occurs in the bag. For example,

given the following state of our bag,

duffleBag

 +--

--->

myArray
 +---- -----------

 mySize

 5

 0 1 2 3 4 5 6 7 8 etc
-----> + + + + + null null null null null

 | | | | |
 V V V V V

 ball cap ball keys ball

The statement duffleBag.getFrequencyOf("ball"); will return the value 3.

In order to determine the number of times anEntry occurs in the bag, we’ll need to use a loop with an external counter.

Here is an approach to solving this problem:

1) declare and set numTimes = 0

2) loop over all the items in the array up until the loop variable k reaches mySize (a for loop)

a. If the object referred to by myArray index k “equals” the anEntry object

i. add one to numTimes

3) after the loop, return the value in numTimes

Write this method now and test it in the lab5a test program.

Problem 3: the contains method

This method returns true if anEntry is stored in the bag. It can be written in one of two ways.

Option 1 is to run through the items in myArray using a for loop. If there is ever an object in the array that
 “equals” anEntry, return true.

Although option 1 is fine, there is a better way. The advantage of writing numerous methods for a class is that some
methods can be written in terms of others. Here is the alternative:

 Option 2 is to just use getFrequencyOf You could simply return the logical expression that getFrequencyOf is
 greater than 0.

Write this method now and test it in the lab5a test program.

Problem 4: the remove method

Suppose our bag at some point looks like the following:

duffleBag

 +--

--->

myArray
 +---- -----------

 mySize

 4

 0 1 2 3 4 5 6 7 8 etc
-----> + + + + null null null null null null

 | | | |
 V V V V

 ball cap mitt cleats

As we learned in lecture, the remove method is easiest to write if it just removes the last item added to the bag. So, the
statement duffleBag.remove(); would make the bag now look like:

duffleBag

 +--

--->

myArray
 +---- -----------

 mySize

 3

 0 1 2 3 4 5 6 7 8 etc
-----> + + + null null null null null null null

 | | |
 V V V

 ball cap mitt

Notice the changes that have taken place on the dufflebag with the single remove statement. Remember, your method
has to return the entry being removed. Come up with an algorithm to solve this method and test it in problem 4 of the
lab5a test program.

Problem 5: the clear method

The clear method removes all of the items in the array. It could be written one of two ways: 1) using a for loop to set all
of the cells in myArray to null (and then set mySize to 0), or 2) use a while loop to continually remove one item from
myArray as long as the bag is NOT isEmpty.

Code up your solution to this method and test it.

Problem 6: method remove(anEntry)

There is another method that removes items from the bag. This one requires the user to specify which item to remove.
To solve this one, first locate the index in myArray where anEntry is stored (if at all). Then, copy the last item in myArray
to the location of anEntry, reduce mySize by one, and return true. If the item is not found, return false.

In order to locate anEntry, our text makes use of a private getIndexOf method, which returns the index where anEntry is
located, or -1. This simplifies the logic of remove(anEntry), but it requires writing an extra method. This method is private
because we don’t want it being invoked by users of our ArrayBag class. Knowing what index an item is stored at would
violate the understanding of what a bag represents at the abstract level: an unordered collection of objects.

Problem 7: Converting the ArrayBag to a generic class

We have been using Object as the data type for all of the objects added to the bag, and for the base type of myArray.
Although this approach works as a means to create a working ArrayBag class, it does have some defects. The problem
occurs when we accidently insert something unintended into our Bag, such as an array of String rather than a single String
object. These mistakes would go unnoticed by the compiler and not appear until run time, where they are usually much
harder to find. In order to allow the compiler to flag incorrect insertions into our ArrayBag, we will now make a simple
modification that allows us to specify the data type our ArrayBag can hold.

The steps to do this are: 1) add <T> after the class declaration, and 2) Change all occurences of Object to T in the remaining
code,

The constructor requires a little extra work: Java does not allow declaring arrays of a generic type, so constructor will
create an array of Object and cast it as an array of T. This requires suppressing the compiler warnings about an unsafe
cast, but there is no danger here, it’s just a protocol that must be followed. Here is how the constructor will look:

public ArrayBag(int initialCapacity)

{

 mySize = 0;

 @SuppressWarnings("unchecked")

 T[] tempArray = (T[]) new Object[initialCapacity];

 myArray = tempArray;

} // end constructor

Try this out and then check that you can now declare duffleBag as an ArrayBag<String>().

Problem 8: the toArray method

The toArray method is defined incorrectly in our text—it does not need to be cast into an array of T since Java does not
remember what T is for arrays—although the basic idea is correct. The steps are as follows: 1) make a new array of Object
called result that has space for mySize items; 2) write a for loop that copies all the items from myArray over to the result
array; 3) return the result array. Write your toArray method and then test it in the lab5a program.

Part B ArrayList class

The List class was introduced in lab 4. A List is a container that stores objects in a particular order, and allows deleting

and adding items at any point in the list. The following Javadoc defines many of the methods we tried out in lab. Today

we will build a class according to these specifications.

Pre-Lab Visualization

1) To make sure you understand how a List works, show the contents of the sample List at each step while performing

the following operations on ArrayList<String> myList. Just list the contents from left to right:

Operation Resulting List items
(item 1 on left)

myList.add("A");
myList.add("B");
myList.add("C");
myList.add("D");
myList.add(1, "one");
myList.add(1, "two");
myList.add(1, "three");
myList.add(1, "four");

2) Show the contents of the List at each step while performing the following operations on List myList. Just list the

contents from left to right:

Operation Resulting List items
(item 1 on left)

myList.add("alpha");
myList.add(1, "beta");
myList.add("gamma");
myList.add(2, "delta");
myList.add(4, "alpha");
myList.remove(2);
myList.remove(2);
myList.replace(3, "delta");

The array based list will use an internal array to maintain the items in the list. As we saw in lecture, the items in the list

can be added at the end or at other locations in the list. In this lab we will be using the generic type specifier <T> in our

code to help make our data structures type safe. Note that our list will be able to expand as needed to accommodate

lists that grow beyond their initial capacity. Therefore a list can never become full, so the isFull method is not included in

our class declaration. Also, the add method will always be successful, so it no longer needs to return a boolean (it’s now

a void method).

Directed Lab Work

We will now start developing and testing the various methods for the ArrayList class. Since the ArrayList shares many of

the same features as the ArrayBag class, some of the method definitions are the same for both. In these cases (the

constructors(2), isEmpty, getLength, contains, clear, and toString) definitions have already been provided.

Your task will now be to complete and test the following methods:

getEntry(position), add(position, newEntry), remove(position), replace(position, newEntry)

And, if time permits, 2 optional methods: getPosition(anEntry), moveToEnd(position)

Problem 1: the getEntry(position) method

The getEntry method returns the item in myArray that sits at position. However, there is a twist: our ArrayList class

defines position 1 as the start of the list. But our array storage begins at index 0. This can get confusing! However, there

is an easy way to translate from the position in the list to the index in the array. Simply define the variable index inside

any methods that use position, as

 int index = position-1;

and then index will refer to the desired array cell number, starting from 0, that we are already familiar with.

As an example, for the following situation with myList, if we print the expression myList.getEntry(3) we should see a

“35” on the screen, NOT “45”!!

myList

 +--

--->

myArray
 +---- -----------

 mySize

 4

 0 1 2 3 4 5 6 7 8 etc
-----> + + + + null null null null null null

 | | | |
 V V V V

 15 25 35 45

Another task that getEntry must perform is to ensure that only legal index values are used to access the array (a user

might accidently execute myList.getEntry(-4) or myList.getEntry(5), both of which are outside the range of allowable

values for index. Should this happen getEntry should return a value of null.

Write this method now and verify that your program prints the correct output. It’s a simple method that just returns the

desired array cell from myArray, or null if the desired cell is not valid.

Problem 2: the add(position, newEntry) method

There is an add method for ArrayList which is identical to the add method for ArrayBag. It adds newEntry at the end of

filled cells in myArray. With a list, however, we often want to add items to different locations besides the end. That is

what the add method does that we are looking at now. This method takes a position and places newEntry at the desired

location (remember, list positions start at 1 and map to an array index of 0). This method also returns true if the add was

successful (the position was a valid location) and false if the add could not be performed (the position requested was

outside the allowable range of cells in the array—it would’ve created a gap in the array or gone past the array bounds).

Example 1: if we have the following list defined:

myList

 +--

--->

myArray
 +---- -----------

 mySize

 4

 0 1 2 3 4 5 6 7 8 etc
-----> + + + + null null null null null null

 | | | |
 V V V V

 15 25 35 45

and we execute myList.add(1,"99"); the result on myList will be to change it as follows:

myList

 +--

--->

myArray
 +---- -----------

 mySize

 5

 0 1 2 3 4 5 6 7 8 etc
-----> + + + + + null null null null null

 | | | | |
 V V V V V

 99 15 25 35 45

and the add method would return true, meaning the add was successful.

Notice that the contents of cells 0 to 3 had to shift upward (rightward) one cell to make room for the new entry.

Example 2: If we now execute the statement: myList.add(6,"88"); the result on myList will be to change it as follows:

myList

 +--

--->

myArray
 +---- -----------

 mySize

 6

 0 1 2 3 4 5 6 7 8 etc
-----> + + + + + + null null null null

 | | | | | |
 V V V V V V

 99 15 25 35 45 88

And again, the add method would return true (success).

Example 3: However, if we now execute the statement: myList.add(8,"77"); myList will remain unchanged and a

result of false will be returned since this command attempts to write at cell 7 in the array, leaving a gap at cell 6.

myList

 +--

--->

myArray
 +---- -----------

 mySize

 6

 0 1 2 3 4 5 6 7 8 etc
-----> + + + + + + null null null null

 | | | | | |
 V V V V V V

 99 15 25 35 45 88

Our algorithm for this add method will then look something like the following:

 Add newEntry at position:

1) if position is within the valid range of locations (for the above list that would be positions 1 thru 7)

a. call ensureCapacity to increase the size of the array if needed

b. define index as position -1 (the array cell number we will place newEntry at)

c. starting with the cell at mySize, copy all the values in myArray one cell to the right, stopping when

cell index is reached. (for loop)

d. Assign myArray[index] = newEntry (stores newEntry in correct location)

e. return true;

2) otherwise, return false;

Try this now and test out your code in problem 2 of Lab5b

Problem 3) remove, replace

Remove:

Remove saves a reference to the item at givenPosition before copying all elements above givenPosition to the left one

cell, and then returns the reference to the removed item. This method will need to write a loop in remove that copies

the appropriate items left one cell as shown in the following diagram showing Bob being removed from a list containing

Alice,Bob,Carla,Doug and Haley:

Replace:

If the givenPosition is legal, this method copies over the item in myArray at givenPosition with a reference to

newEntry, and returns true. Otherwise it returns false.

Problem 4) getPosition, moveToEnd

Note: there are no stubs for these methods so you'll have to add them competely, with javadocs, to the ArrayList file.

Read the example test code in the Lab5b file to see how these methods are used. The method getPosition should return

the position (remember, we start counting at 1) of an item in the list. If it is not found it should return the flag -1.

the method moveToEnd should move the item at givenPosition to the end of the list.

Problem 5) Replace without replace at the client level

The list operations we've been creating have a lot of redundancy. To illustrate this, write some code at the client level

under Problem 5 in Lab5b that modifies myList, replacing the "53" item with a "35", only do this without using the

replace method. Use remove and add to do the replacement. Also, imagine that you will not be able to visualize the list,

so you'll have to use getPosition to tell you where the item is located, in other words,

1) Find the position of the item to change

2) remove that position

3) add the new value at the same position

