
CSIS 10B   Assignment 3 Stacks & Queues               

  

Goal 

In this assignment you will create two Stack and two Queue classes each, using different implementation strategies. At 
the end, you will copy in your solution to the Palindrome problem in assignment2 and use your own Stack and Queue 
classes to solve the complete problem. 

Resources 

 Chapter 5 and 6: Stacks and Stack Implementations 

 Chapters 10 and 11: Queue and Queue Implementations 

 You may also wish to check out more applications of Stacks and Queues in Sedgewick’s lecture on the topic. 

Java Files 

 StackArray.java 

 StackLink.java 

 StackTester.java 

 AQueue.java 

 LQueue.java 

 TestAQueue.java 

Part A – Stacks, Introduction 

 

The ADT stack is used in many areas of computer science, from parsing code in compilers to managing the runtime 

environment during method invokations. It embodies many of the features of the bag class we used last week, especially 

in its simplicity of implementation. A stack literally represents a pile of items, and provides access only to the top item.   

For simplicity, the stacks we build in this lab will hold items of class Object, meaning they will handle generic types but 

we are responsible for ensuring the proper types are added, and we'll have to cast items back to their original type as we 

pop them off the stack. Here are the methods we will implement: 

boolean  isEmpty() 

          Checks for empty stack  

 Object  peek() 

          Returns the top item from stack without removing  

 Object  pop() 

          Pops an item off the top of stack  

 void  push(Object item) 

          Pushes a new item onto top of stack  

 int  size() 

          Gets the number of items in the stack  

 String  toString() 

          Creates and returns a string version of stack  

 

The first task is to create a stack based on an array. Then you'll do the same thing with a linked chain of nodes.  

http://tomrebold.com/csis10b/lectures/05/Chapter05-Stacks.pdf
http://tomrebold.com/csis10b/lectures/06/Chapter06-StackImplementations.pdf
http://tomrebold.com/csis10b/lectures/10_11/Chapter10-QueuesDequesPriorityQueues.pdf
http://tomrebold.com/csis10b/lectures/10_11/Chapter11-QueueDequePriorityQueueImplementations.pdf
http://tomrebold.com/video/Algorithms2a-StackQueue/Algorithms2a-StackQueue.mp4
file:///C:/Users/tom/Documents/A%20www.tomrebold.com/csis10b/assignments/03/StackArray.html%23isEmpty()
file:///C:/Users/tom/Documents/A%20www.tomrebold.com/csis10b/assignments/03/StackArray.html%23peek()
file:///C:/Users/tom/Documents/A%20www.tomrebold.com/csis10b/assignments/03/StackArray.html%23pop()
file:///C:/Users/tom/Documents/A%20www.tomrebold.com/csis10b/assignments/03/StackArray.html%23push(java.lang.Object)
file:///C:/Users/tom/Documents/A%20www.tomrebold.com/csis10b/assignments/03/StackArray.html%23size()
file:///C:/Users/tom/Documents/A%20www.tomrebold.com/csis10b/assignments/03/StackArray.html%23toString()


 

Pre-Lab Visualization 

StackArray vs StackLink 

 

The array based stack (StackArray) will use an internal array to maintain the items on the stack. As we saw in lecture, 

the bottom of the stack will be located in cell 0 of the array, and items will be added to successive array cells.  

We'll use an integer member to keep track of where the top of the stack is located. We can also use this to tell how large 

our stack is.  

Here is some code that creates one of our simple array based stacks: 

StackArray st = new StackArray();        

      st.push("ball"); 

      st.push("cap"); 

      st.push("mitt"); 

      st.push("cleats"); 

 

Notice we are not using interfaces or type specifiers in angle brackets as we would in a full up version of a Stack.  Our 

stack is storing items in an array of objects. 

The memory map of the above stack will look something like this    

st 

     ---   
 

 
---> 

array 
        +---- ------------ 

         top 

  3  
 

               
----->      +      +      +      +     null     null     null     null     null     null     

      |      |      |      |           
      V      V      V      V           

   ball   cap   mitt   cleats          
 

 

(and in simpler notation would be something like   st  [top: 3, array:]ball,cap,mitt,cleats ) 

Note that the top member indicates that the top of the stack is in cell 3.  

If we had instead create a stack from linked nodes (StackLink class), we would draw our stack like this: 

st 

     ---   
 

 
---> 

topNode 
        +---- ------------ 

         size 

  4  
 

               
----->      +       +--- ------>      +       +--- ------>      +       +--- ------>     +     null    

      |        |        |        |     
      V        V        V        V     

   cleats   mitt   cap    ball      
 

 

(or in simpler notation:   st [size: 4, topNode]cleatsmittcapball ) 

Notice that the order of the items is reversed from the array stack and we keep track of the top node with the Node 

reference topNode. Since it's not easy to tell how many nodes we have in our stack, we'll also use a member variable 

size to keep track of the number of nodes.   

Using the above as a guide, draw pictures of the two stacks that are formed by the following statements: 

 



StackArray sa = new StackArray(); 

StackLink  sl = new StackLink();       

      sa.push("a"); sa.push("b"); sa.push("c"); sa.push("d"); 

      sl.push(sa.pop()); 

 sl.push(sa.peek()); 

 sl.push(sl.peek()); 

 sa.push(sl.pop()); 

 

 

 

 

 

 

 

 

 

Directed Lab Work 

 

StackArray class 

Step 1. Add the constructor, define isEmpty, and toString methods to the StackArray class 
 
This constructor method simply initializes member array to a new array of objects with the default array size. It also sets 
the top member to -1, a signal that the stack is empty 
 
There is already a stub for isEmpty. This method should check whether top is -1 and return true if it is, false if not. 
 
There is also a stub for toString. The toString method should create a String result, then use a for loop to add each item 
in the stack **starting at the bottom** to the end of result. Then return result. 
 
Checkpoint: activate the lines in StackTester for problem 1, by adding an extra '/' character in front of the block comment 
for problem 1. Run the program and observe the results. You should have an empty stack. 
 
Step 2. Define the push and size methods 
 
Add code to the push method. To push an item on the stack, simply add it to the cell right after top, and then add one to 
top. What should happen if there is no space left?  
 
One thing you can do is resize the array.  use    array = Arrays.copyOf(array, 2*array.length);  to double the size of the 
array if needed. This statement copies the old array into an array of twice the size, returning the address to store in the 
array variable, replacing the reference to the old array.  
 
The size method should just return top+1 
 



Test these methods by executing problem 2 in StackTester. 
Step 3. Define peek and pop methods 
 
Peek should return a reference to the top item in the array 
 
Pop should store a reference to the top item in a temp variable, put null in the array cell located at top, and reduce top 
by 1. Finally it should return the reference to the top item (the temp variable). 
 
Test these methods by executing problem 3 in StackTester.  Once you are finished with step 3, it's time to move over to 
the StackLink class.  Comment out problems 1 through 3 and activate problem 4 in StackTester. 
 

StackLink class 

The StackLink class uses a private Node class to store the data in the stack. The private Node field topNode refers to the 

last item added (pushed) onto the stack, and the private int field size maintains a count of the number of nodes in the 

stack.  

Step 4. Define constructor, isEmpty, and toString 
 
The stackLink constructor will just assign null to topNode and 0 to size. 
The isEmpty method will return true if topNode is null 
 

The toString method has a challenge: if we traverse the chain left to right, we will build our String "top first" and it will 

be flipped with respect to the StackArray class toString. For the same stack shown in the pictures above, the StackArray 

would print  ball cap mitt cleats (top on the right),  while the StackLink object would print cleats mitt cap ball (top on 

the left). It makes more sense to show the top on the right, so we can modify toString for StackLink to print the list out in 

reverse. We can do this by changing the way we add items to the result string. 

The algorithm for toString is: 

1) Create a Node current and set to topNode 

2) Create a String result and assign it the empty string ""; 

3) while current is not null 

 add the data in the node referred to by current (current.data) to the beginning of the 

result string. (result = current.data + “ “ + result; adds the new item to the front of the 

result string, that’s the opposite of how we did it for the linked bag). 

 advance current to the next node 

4) When finished, return result. 

 

Step 5. Define push and size methods 

 
Algorithm for push:   This is very similar to the add method for the LinkedBag class. Check the lab 6 handout for more 
help if you need it.  
 
Step 6. Define peek and pop methods 
 

Algorithm for pop: This is very similar to the remove method for the LinkedBag class. Check the lab 6 handout for more 

help if you need it.  

Algorithm for peek: just return the data in the topNode. 



Test your methods. Then, when finished, go back and analyze the Big-Oh growth of all the methods in both of your 
Stack classes, including the constructors. Add a comment right after the method header with the Big-Oh notation, such 
as O(1),  O(N), O(N^2)  etc. (hint, they are probably all either O(1) or O(N). When you are finished, move on to the Queue 
portion of the assignment 
 

Part B Queues, Introduction 

 

This portion of the assignment focuses on another constrained linear data structure, the queue. The elements in a queue 

are ordered from least recently added (the front) to most recently added (the rear). Insertions are performed at the rear 

of the queue, and deletions are performed at the front. You use the enqueue operation to insert elements and the 

dequeue operation to remove elements. Although we won’t be using interfaces in this assignment, the Queue interface 

which defines the methods our Queues must implement, is defined below for reference. 

 
public interface Queue           

{   

    // Queue manipulation operations 

    public void enqueue ( Object newElement );  // Enqueue element at rear 

    public Object dequeue ( );                  // Dequeue element from front 

    public void clear ( );                      // Remove all elements from queue 

     

    // Queue status operations 

    public Object getFront();    // get item at front without removing 

    public boolean isEmpty ( );            // Is Queue empty? 

    public boolean isFull ( );             // Is Queue full? 

    public String toString( );             // Outputs a String representation of Q 

 } 

Pre-Lab Visualization 

 

1)  To make sure you understand how a Queue works, show the contents of the Queue at each step while performing 

the following operations on Queue testQ. Just list the contents from left to right, where left is the front of the queue: 

 

Operation Resulting Queue items 
(front on left) 

testQ.enqueue('a');   

testQ.enqueue('b');  

testQ.enqueue('c');  

testQ.dequeue();  

testQ.dequeue();  

2)  Show the contents of the Queue at each step while performing the following operations on Queue testQ. Just list the 

contents from left to right, where left is the front of the queue: 

 

Operation Resulting Queue items 
(front on left) 

testQ.enqueue('a');   

testQ.enqueue('b');  

testQ.enqueue(testQ.dequeue());  

testQ.enqueue(testQ.getFront());  

testQ.dequeue();  



Directed Lab Work  

LQueue Class 

 

To begin, we will develop the linked node version of the Queue class in LQueue and test it with the QueueTester 

program. This class defines a private Node class that will be used internally to store the data in an LQueue object. It also 

uses two Node reference variables, (front and back)  to refer to the first and last Nodes in the queue. 

 

The following diagrams should help you visualize how the different queue methods will work. 

 

Step 1) Define the Constructor, isEmpty, and toString methods 

 

Constructor: set both front and back Node references to null (this is what an empty queue looks like), so that when 

we execute the statement    LQueue qu = new LQueue();      we get the following object in memory 

 

qu 

     ---   
 

 
---> 

front 
null  

         back 
  null  

 

               
               

               
               

               
 

 

isEmpty: this should return true if both front and back are null 

 

toString:  when we eventually add items to our queue, such as with the statements   

qu.enqueu(“a”); qu.enqueu(“b”); qu.enqueue(“c”); qu.enqueue(“d”); 

 

our memory model of the queue will look  something like this: 

 

 
 

but for convenience, we will simplify our drawing to look like this, showing front and back pointing to their  

respective nodes: 

 

    front           back     
     |             |     
     V             V     

      +       +--- ------>      +       +--- ------>      +       +--- ------>     +     null    

      |        |        |        |     
      V        V        V        V     

      a      b      c       d      
 

 

 

 

 The toString method will just need to create a current Node reference like the Stack, Bag and List classes we’ve  



been working on, and iterate over the Nodes, adding each node’s data to the result variable.  

 

Step 2) define the enqueue method 

 

enqueue:  this method adds an item to the front of the queue.  

 

Algorithm 

a) create newNode with the new data 

b) if the Queue is empty we'll just add it as the only node in Queue, it will be both front and back like so: 

  set front to refer to newNode 

  set back to refer to newNode   

 

 Suppose we execute  qu.enqueu(“a”);  on an empty queue.  We would expect following memory map: 

 

    front    back              
  |    /              
  V V              

      +     null             

      |              
      V              

      a              
 

 

 

c) otherwise (meaning, the queue is not empty)  we'll add to the end of the chain of nodes, like so: 

   set the next pointer of back to refer to the newNode 

  set back to refer to the newNode 

 

Suppose we execute  qu.enqueu(“b”);  on our queue from the last example. We would expect the 

following memory map: 

 

  front     back           
     |      |           
     V      V           

      +       +--- ------>      +     null          

      |        |           
      V        V           

      a      b            
 

 

Step 3) define the dequeue and getFront methods 

 

dequeue: this is very similar to the pop method for the StackLink class. However when removing the last item you have 

to check to make sure that back is also set to null.  

 

getFront: is very similar to peek for the StackLink class.  

 

VQueue<E> class 

 



Just to show there are many ways of implementing a Queue, we will now create a VQueue class, which will be an 

adapter class for an internal Vector object. What is a Vector? A Vector is like our ArrayList class, except it starts counting 

from 0 instead of 1. If you would like to explore what a Vector object is, see the FunWithVectors program in the 

assignment 3 download. Feel free to add lines to this demo app. The Vector class implements the Java List Interface, as 

you can see in the javadoc at http://docs.oracle.com/javase/6/docs/api/java/util/Vector.html  

 

By using a Vector to hold our queue’s data, we essentially get to use a “smart” array inside our VQueue object, instead 

of a normal array. This smart array, (or Vector) object, will manage the data we store in our queue. So we won’t be 

managing an array or a linked chain of nodes of our own, but instead use the Vector object, an object that has its own 

internal array with methods that allow you  to add to and remove data from it.  

 

The Vector object then becomes like a wrapper around your queue’s data, like another layer of software between the 

client (code where our VQueue is being used) and the data in the queue. If we create a VQueue object with the 

statement,   VQueue<String> qu = new VQueue<String>(); and add some items to it, the memory map picture would 

look something like this: 

 
 

In other words, our VQueue object now has only one instance field, a reference to a Vector (myVector) where all of the 

data is stored. The internal fields of the Vector are shown, assuming its array is called myArray and its size field is called 

mySize. We don’t need to know what these fields are called, nor will we refer to them directly, they are just shown to 

help you form a picture of what is going on. When we wish to write code that enqueues or dequeues items to or from 

our queue we will simply use the Vector add and remove methods to pass the information to or from our internal 

vector.  

 

The Java Vector class is very similar to our ArrayList class. It manages items by storing them in an array, and allows 

insertion and deletion anywhere in the list (as shown in FunWithVectors in the assignment3 download).  The Vector 

class also supports generics and automatically resizes the array which means we never have to worry about it filling up. 

It also has a large number of methods for modifying it. For our purposes, the following Vector methods will be most 

useful: 

 

VECTOR METHODS 

public void add(E item);  // adds item to the end of the array 

public E remove(int index);   // removes item at cell index and returns. Copies over any gap that may occur in array 

public E get(int index);   // returns without removing the item at cell index  

public boolean isEmpty();  

public void clear();   

 

Since Vector supports generics, we’ll make our VQueue class also support generics.  

 

Step 4) Declare the Vector<E> instance field in VQueue, as indicated near the top of the class file. This variable will refer 

to our internal Vector object. For example,  

 Vector<E> myVector; 

http://docs.oracle.com/javase/6/docs/api/java/util/Vector.html


 

Then Define the Constructor, isEmpty and toString methods 

 

Constructor: this method will initialize myVector as a new Vector of <E> 

 

isEmpty: this method will just return true if myVector is empty, false otherwise 

 

Step 5) Define the enqueue method 

 

This method just adds an item to the back of the vector. We will consider location 0 to be the front, so the back will be 

at the other end, deeper into the Vector’s internal array. Luckily the Vector add method adds an item automatically to 

the end of the list.  

 

Step 6)  Define the dequeue and getFront methods 

 

The dequeue method should remove and return the item located at the front of the queue, or, location 0 in the vector. 

The Vector remove method takes a number for the cell we want to remove, in this case, location 0. Note that the 

vector’s own remove method will take care of shifting items over to fill in the gap caused by the removal.  

 

The getFront just returns the item at the front of the queue, or location 0 in our queues internal vector. Use one of the 

Vector methods listed above that is appropriate for this task. 

Test your methods. Then, when finished, go back and analyze the Big-Oh growth of all the methods in both of your 
Stack classes, including the constructors. Add a comment right after the method header with the Big-Oh notation, such 
as O(1),  O(N), O(N^2)  etc. (hint, they are probably all either O(1) or O(N). 
 

 

 

 


