
Lab Manual
to accompany

Charles Hoot
Oklahoma City University

Upper Saddle River, NJ 07458

Vice President and Editorial Director, ECS: Marcia J. Horton
Executive Editor: Tracy Dunkelberger
Associate Editor: Carole Snyder
Editorial Assistant: Christianna Lee
Executive Managing Editor: Vince O’Brien
Managing Editor: Camille Trentacoste
Production Editor: Donna M. Crilly
Manufacturing Manager, ESM: Alexis Heydt-Long
Manufacturing Buyer: Lisa McDowell
Executive Marketing Manager: Robin O’Brien
Marketing Assistant: Mack Patterson

© 2007 Pearson Education, Inc.
Pearson Prentice Hall
Pearson Education, Inc.
Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any
means, without permission in writing from the publisher.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.
All other tradmarks or product names are the property of their respective owners.

The author and publisher of this book have used their best efforts in preparing this book.
These efforts include the development, research, and testing of the theories and
programs to determine their effectiveness. The author and publisher make no warranty
of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for
incidental or consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

ISBN 0-13-230349-3

Pearson Education Ltd., London
Pearson Education Australia Pty. Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education—Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Upper Saddle River, New Jersey

TTaabbllee ooff CCoonntteennttss

LLaabb 11 OObbjjeeccttss .. 11

LLaabb 22 LLiisstt CClliieenntt .. 1111

LLaabb 33 AArrrraayy BBaasseedd LLiisstt IImmpplleemmeennttaatt iioonn 1199

LLaabb 44 LLiinnkk BBaasseedd LLiisstt IImmpplleemmeennttaatt iioonn 3311

LLaabb 55 IItteerraattoorrss .. 4433

LLaabb 66 RReeccuurrssiioonn——PPaarrtt II .. 5511

LLaabb 77 RReeccuurrssiioonn——PPaarrtt II II .. 8877

LLaabb 88 BBaassiicc SSoorrttss .. 9999

LLaabb 99 AAddvvaanncceedd SSoorrttss .. 111111

LLaabb 1100 SSeeaarrcchheess .. 113333

LLaabb 1111 DDiicctt iioonnaarryy CClliieenntt .. 115555

LLaabb 1122 HHaasshh TTaabbllee IImmpplleemmeennttaatt iioonn 116677

LLaabb 1133 SSttaacckk CClliieenntt .. 118855

LLaabb 1144 QQuueeuuee IImmpplleemmeennttaatt iioonn aanndd CCll iieenntt 220033

LLaabb 1155 TTrreeee CClliieenntt .. 221155

LLaabb 1166 TTrreeee IImmpplleemmeennttaatt iioonn 222299

LLaabb 1177 BBiinnaarryy SSeeaarrcchh TTrreeee IImmpplleemmeennttaatt iioonn 224411

AAppppeennddiixx AA AAnniimmaatt iioonn FFrraammeewwoorrkk 225577

v

PPrreeffaaccee

IInnttrroodduucctt iioonn

In general, the labs in this manual are designed to give you some experience in using and
implementing data structures.

A number of the labs ask you to complete a program that uses a particular data structure. You will
find as you continue programming that the data structures you learn in this course will be the
primary tools in your programming tool kit. These labs should serve as an intermediate step in your
programming life. Before you do the lab, it is your responsibility to study carefully the concepts and
code for the particular structure. The lab will then give you support and direction for finishing an
application. It is important not to stop there, but to write other programs of your own that use the
data structure.

The other labs ask you to work on the implementation of a data structure. Other programmers,
however, have already implemented the common data structures and it would be foolish to rewrite
them each time you need them. So why do labs that work with the implementations? There are two
main reasons. The first reason is that it will help you understand the performance of the particular
data structure better. The second reason is that you may find the existing data structures do not quite
match your needs. As you create a new data structure or modify an existing data structure, your
practice with the techniques shown in this lab manual will be helpful.

Before going on, I must mention a few things that this manual is not designed to do.

• This manual is not intended to teach you how to design programs. It is presumed that you
have already spent time learning the basic techniques of decomposing a problem and can
write an algorithm to accomplish a task.

• This manual is not intended to teach you how to write programs. Again, this should have
been covered in your previous course work. You should be well familiar with all the basic
programming constructs like iteration and be able to write methods to accomplish tasks. It is
also assumed that you have familiarity with the basic mechanics of how objects work.

• This manual is not intended to teach you how to program in Java. If you know C/C++, you
will find that there are a number of similarities to Java. In many ways Java is a friendlier
language, but there are enough differences that it is not advisable for this to be your first
experience using Java. In particular, one of the major differences is in the details of how Java
deals with objects and classes. Every lab will use classes.

• This manual is not intended to teach you how to design object-oriented programs. How to
divide the responsibilities of a program between cooperating objects is the subject of a
semester long course that often comes after data structures. The programs in these labs have
been created with object-oriented design principles in mind and hopefully will foreshadow
that material.

SSttrruuccttuurree ooff tthhee LLaabbss

All of the labs follow the same structure:

1. Goal

2. Resources

3. Java Files

4. Introduction

5. Pre-Lab Visualization

Prefacevi

6. Directed Lab Work

7. Post-Lab Follow-Ups

The Goal is a concise explanation of the purpose of the lab. In the Resources you will find references
to key chapters in Data Structures and Abstractions with Java (Second Edition) by Carrano. Before
you start the lab, it is hoped that you have read that material first. In addition, files or relevant
hyperlinks may be given. The Java Files section lists all the files that you will use in the lab. The
Introduction provides supplementary material to that in your book where needed and introduces
you to the specifics of the material covered in the lab. The Pre-Lab Visualization gives a number of
exercises intended to help you think about the problem and prepare to write the code. You should do
these exercises before doing any work at a computer. This kind of preparatory work is a good habit to
get into and will increase the quality of your code. The next section contains the instructions for the
lab. In general, you will be asked to complete the code iteratively. You will write code to do a small
task, and then test to see that it works. Again, this is a recommended habit to cultivate. The post-lab
section gives exercises that invite you to reflect on what you have done or that extend the work that
you have done in the lab.

JJaavvaa EEnnvviirroonnmmeennttss

One of the advantages of working with Java is that platform issues are minimized. Whether you are
using a workstation or a personal computer should not matter. Having said that, you have a number
of choices of environments for developing programs in Java.

The simplest choice is to use an editor and then compile and run your programs from the command
line. While this is a classic technique, more support can be had. These more advanced environments
may offer program composition tools, visualization tools, compilation tools, version tools, automatic
code generation tools, and debugging tools. This manual is not written for any specific environment,
and which one you use will depend on your resources.

There are two online resources that you might find useful. The first is java.sun.com. This is the
starting point for all things Java. Here you can find free downloads like Java 2 Platform, Standard
Edition, and NetBeans. You can also find tutorials and documentation for Java. One useful starting
point is the Application Program Interface (API) documentation that documents all of the standard
classes and their methods. At the time this was written, the most recent version of Java was 1.5.0 and
the API documentation was at java.sun.com/j2se/1.5.0/docs/api/. Please refer to the Java
Website for the most recent version.

The second is www.bluej.org. BlueJ is an integrated development environment designed for
teaching. It can be downloaded for free. One of the nice features BlueJ has is the ability to create
objects and then invoke methods on those objects. This can be an aid in debugging classes.

CCoonncclluussiioonn

The course on data structures is one of the critical courses in computer science. It is usually the first
course that ties together the theoretical mathematics that underpins computer science with the
practical aspects of writing programs in a systematic way. I have found that it is a key indicator of the
performance of students in upper-division undergraduate work and beyond. The better you
understand this material, the better you will do later. I wish you every success and hope that this
manual helps you.

Sincerely,

Dr. Charles Hoot

Lab Manual for Data Structures and Abstractions with Java ™ vii

NNoottee ttoo IInnsstt rruuccttoorrss

These labs were designed with the intention that students would do the Pre-Lab Exercises before the
lab session. The lab session would then be an opportunity for the student to work with guidance
from an instructor. To make sure that students are on the right track, it may be helpful to check their
Pre-Lab Exercises before the start of lab.

Due to time constraints, it may not be possible for students to complete the entire directed lab within
one lab session. (This becomes a certainty if they don’t do the Pre-Lab beforehand.) In such cases, a
portion of the lab can be made the focus of the lab session and the remaining parts either skipped or
given as a take-home assignment.

1

LLaabb 11 OObbjjeeccttss

GGooaall
In this lab you will explore constructing and testing an object.

RReessoouurrcceess
• Chapter 1: Java Classes

• Chapter 2: Creating Classes from Other Classes

• Chapter 3: Designing Classes

• Rational.html—Interface documentation for the class Rational

• Counter.html—Interface documentation for the class Counter

JJaavvaa FFii lleess
• Rational.java
• ZeroDenominatorException.java
• RationalTest.java

• Counter.java
• CounterTest.java

IInnttrroodduucctt iioonn
Before you build a class, you should determine what its responsibilities are. Responsibilities express
the duties of an object in its interactions with other objects. Some typical kinds of responsibilities are
knowing, computing, controlling, and interacting with a user. For example, consider a class
representing a bank account. It would have a responsibility to know the balance of the account. An
accessor method that returns the value of a private variable holding the balance can fulfill that
responsibility. Another responsibility of the bank account class might be to compute the monthly
interest. That responsibility can be fulfilled by a mutator method that first computes the interest and
then modifies the balance. But who decides when the interest should be computed? This is an
example of a controller responsibility and most likely would not be the responsibility of the bank
account class. Suppose you wished to withdraw a hundred dollars from your account. What class
would be responsible for doing the input and output? Again, it is probably not the bank account
class. The interface could be an automated teller, a Java program running on the web, or even just a
plain terminal. If the bank account class is responsible for the interaction, it will be susceptible to
frequent changes as different technologies are developed and used to allow a customer to interact
with his or her account. To protect the bank account from those kinds of changes, the interaction
responsibility will be assigned to other classes that have interaction as their primary responsibility.
The classes that will be developed in this lab manual are intended to be very general and therefore
will usually not have any interaction responsibilities. Deciding which responsibilities a class should
have is a design issue that is the province of a course on object-oriented programming. To do it well
takes practice.

Once the responsibilities of a class have been determined, an implementation is designed to meet
those responsibilities. The implementation will consist of two pieces: the variables whose values
comprise the state of the object, and the methods that comprise the protocol for the class. But when is
the implementation correct? The answer to this question is addressed in two ways.

The first approach is the use of invariants. As a class is being designed, look for constraints
(invariants) on the state of the object that should always be true. For example, consider the bank
account class. One invariant might be that the interest rate should always be greater than or equal to
zero. Another invariant could be that the balance should always be the total amount deposited minus
the total amount withdrawn. One of the primary functions of the constructor is to start the object in a
valid state. (All invariants are true.) Mutator methods (those that change the state) should guarantee
that they leave the object in a valid state.

2 Lab 1: Objects

But this is not enough. Suppose that the bank account class has a deposit method. If that method was
invoked with a thousand dollars, but it only added a hundred dollars to the total deposits and the
balance, it would meet the invariant. Unfortunately, the bank would have some very unhappy
customers. The second approach is to ensure the correct operation of the methods. Besides
guaranteeing that the state is valid after the method completes, it must be the correct state.
Additionally, any value returned by the method must be correct. There are other ways to specify the
correct operation of methods, but pre- and post-conditions are very common. Pre-conditions specify
what the method expects to be true before it is invoked. Post-conditions specify what must be true
after the method is invoked provided that the pre-conditions were met. For example, consider a
deposit method for the bank account class:

deposit (int amount)

What are the pre-conditions? Certainly the bank account must be in a valid state, but is there any-
thing else? Can the deposit be negative? No. This suggests a pre-condition that the amount must be
non-negative. The client has the responsibility to guarantee that the pre-condition is met. What hap-
pens if the object’s client makes a mistake and accidentally invokes the method with a negative
value? There are two ways of handling the situation. The first technique is to be safe and test for the
pre-condition. If it is not met, the state of the object will be unchanged and an error will be thrown.
With the second technique, instead of having the requirement in the pre-conditions, it will be part of
the post-conditions. A Boolean return value is added to the deposit method and if the amount is
negative, the state will be unchanged and false will be returned. Otherwise, the total deposits will be
increased by amount, the balance will be increased by amount, and true will be returned.

It should be mentioned that besides pre- and post-conditions, another way of specifying the behavior
of a class is via the use of test code. While test cases are an important tool and these labs will use
them extensively, do not become overly reliant on them. Passing the test cases does not guarantee
that the class is behaving correctly.

In today’s lab, you will work with two classes. The first class will represent a rational number that is
the ratio of two integer values. The second class will be a counter that has both a minimum and
maximum value.

PPrree--LLaabb VViissuuaall iizzaattiioonn

RRaatt iioonnaall
Here is a list of responsibilities for the rational class:

1. Know the value of the denominator.
2. Know the value of the numerator.
3. Be able to compute the negation of a rational number.
4. Be able to compute the reciprocal of a rational number.
5. Be able to compare two rational numbers for equality.
6. Be able to compute the sum of two rational numbers.
7. Be able to compute the difference of two rational numbers.
8. Be able to compute the result of multiplying two rational numbers.
9. Be able to compute the result of dividing two rational numbers.
10. Be able to compute a printable representation of the rational number.

What values will the Rational class need to implement these responsibilities?

Lab Manual for Data Structures and Abstractions with Java ™ 3

Are there any constraints on these values?

Here is a list of constructors and methods that will be used to implement the responsibilities. Fill in
the missing pre-conditions, post-conditions, and test cases.

Rational()
Pre-condition: none.
Post-condition: The rational number 1 has been constructed.
Test cases: none.

Rational(n, d)
Pre-condition: The denominator d is non-zero.
Post-condition: The rational number n/d has been constructed and is in normal form.
Test cases:

n = 2, d = 4; result is 1/2
n = 0, d = 7; result is 0/1
n = 12, d =–30; result is –2/5
n = 4, d = 0; result is Exception

int getNumerator()
Pre-condition: The rational n/d is in a valid state.
Post-condition: The value n is returned.
Test cases:

n/d is 1/2; result is 1
n/d is 0/1; result is 0
n/d is –2/5; result is –2

int getDenominator()

Pre-condition:

Post-condition:

Test cases:

Rational negate()
Pre-condition: The rational n/d is in a valid state.
Post-condition: The rational number –n/d has been returned.

Test cases:

Rational reciprocal()

Pre-condition:

Post-condition:

Test cases:

4 Lab 1: Objects

boolean equals(Object other)

Pre-condition:

Post-condition:

Test cases:

Rational sum (Rational other)
Pre-condition: The rational n/d is in a valid state and other is the valid rational x/y.
Post-condition: The rational number (ny+xd)/dy has been returned.
Test cases:

n/d is 1/2, x/y is 1/2; result is 1/1
n/d is 1/2, x/y is 1/6; result is 2/3
n/d is 3/4, x/y is 5/6; result is 19/12
n/d is 1/3, x/y is –2/3; result is –1/3

Rational difference(Rational other)

Pre-condition:

Post-condition:

Test cases:

Rational multiply(Rational other)

Pre-condition:

Post-condition:

Test cases:

Lab Manual for Data Structures and Abstractions with Java ™ 5

Rational divide(Rational other)

Pre-condition:

Post-condition:

Test cases:

String toString()
Pre-condition: The rational n/d is in a valid state.
Post-condition: The string “n/d” has been returned.
Test cases:

n/d is 1/2; result is “1/2”
n/d is 0/1; result is “0/1”
n/d is –2/5; result is “–2/5”

6 Lab 1: Objects

CCoouunntteerr
The counter will be a class that acts like a simple click counter (used for counting attendance) with a
few improvements. The click counter will have a minimum and maximum value. It will start at the
minimum value. Each click will add one to the counter, except when the counter hits the maximum
value, where it will roll back over to the minimum. The click counter will also support an operation
that decreases the value of the counter by one. If this would decrease the value below the minimum,
it will roll over to the maximum value.

Think about the preceding description and give a list of responsibilities for the Counter class.

What values will the Counter class need to implement these responsibilities?

Are there any constraints on these values?

Lab Manual for Data Structures and Abstractions with Java ™ 7

Give a list of constructors and methods that will be used to implement the responsibilities you have
listed. Fill in the pre-conditions, post-conditions, and test cases.

8 Lab 1: Objects

DDiirreecctteedd LLaabb WWoorrkk

RRaatt iioonnaall
The skeleton of the Rational class already exists and is in Rational.java. Test code has been cre-
ated and is in RationalTest.java. You will complete the methods for the Rational class.

SStteepp 11.. If you have not done so, look at the interface documentation in Rational.html. Look at
the skeleton in Rational.java. All of the methods exist, but do not yet do anything. Compile the
classes ZeroDenominatorException, Rational, and RationalTest. Run the main method in
RationalTest.

Checkpoint: If all has gone well, you should see test results. Don’t worry for now about whether the
test cases are passes or fails. Don’t worry about the null pointer exception. All we want to see is that
the Rational class has the correct protocol. Now you will complete the heart of the Rational class,
its constructors, and basic accessor methods.

SStteepp 22.. Create private variables that will hold the state of a Rational object.

SStteepp 33.. Complete the default constructor. It should create the rational number 1.

SStteepp 44.. Complete the private method normalize. It should put the rational number in a normal
form where the numerator and denominator share no common factors. Also, guarantee that only the
numerator is negative. The gcd (greatest common divisor) method may be of use to you.

SStteepp 55.. Complete the alternate constructor. It should throw a new ZeroDenominatorException

if needed. Don’t forget to normalize.

SStteepp 66.. Complete the method getNumerator().

SStteepp 77.. Complete the method getDenominator().

Checkpoint: At this point there is enough to test. Your code should compile and pass all the tests in
testConstructor(). If it fails any tests, debug and retest. The next two methods chosen for
implementation are simple methods that construct a new rational number using the object.

SStteepp 88.. Complete the method negate(). Note that this method should not change the rational
number it is invoked on, but return a new object. Don’t forget to change the return statement. Cur-
rently it returns null, which means after executing the line of code

Rational r2 = r1.negate();

the variable r2 will have the value null. If any methods are invoked on null (e.g.,
r2.getNumerator()) a null pointer exception will occur.

Checkpoint: Your code should compile and pass all the tests up to and including testNegate(). If it
fails any tests, debug and retest.

SStteepp 99.. Complete the method reciprocal().

Checkpoint: Your code should compile and pass all the tests through testInvert(). If it fails any
tests, debug and retest. The next two methods chosen for implementation are closely related and will
be tested together.

SStteepp 1100.. Complete the method add().

SStteepp 1111.. Complete the method subtract(). There are a couple of ways that you can implement
subtraction. One way is to use a formula similar to the one used for addition. The other way is to
negate the second argument and then add. Either technique will work.

Lab Manual for Data Structures and Abstractions with Java ™ 9

Checkpoint: Your code should compile and pass all the tests through testAddSubtract(). If it fails
any tests, debug and retest. Again the next two methods are closely related and will be implemented
together.

SStteepp 1122.. Complete the method multiply().

SStteepp 1133.. Complete the method divide().

Final checkpoint: Your code should compile and pass all the tests.

CCoouunntteerr
The skeleton of the Counter class already exists and is in Counter.java. Test code has been created
and is in CounterTest.java. You will complete the methods for the Counter class.

SStteepp 11.. If you have not done so, look at the interface documentation in Counter.html. Look at
the skeleton in Counter.java. All of the methods exist, but do not do anything yet. Compile the
classes CounterInitializationException, Counter, and CounterTest. Run the main method in
CounterTest.

Checkpoint: If all has gone well, you should see test results. Don’t worry for now about whether the
test cases are passes or fails. All we want to see is that the Counter class has the correct protocol.
Again we will work from the heart of the class outward. Your first task is to complete the
constructors.

SStteepp 22.. Create private variables that will hold the state of a Counter object.

SStteepp 33.. Complete the default constructor. It should create a counter with a minimum of 0 and a
maximum that is the largest possible integer value (Integer.MAX_VALUE).

SStteepp 44.. Complete the alternate constructor. It should check to see if the minimum value is less
than the maximum value and throw an exception if not.

Checkpoint: At this point we will verify that the exception is correctly generated. Your code should
compile and pass all the tests in testConstructor(). If it fails any tests, debug and retest. This is not
a complete test of the constructors and you may have to revise them. The toString() method is
useful to implement early because it reports on the state of an object without affecting it. It can then
be used in later test cases. It is also one of the methods that classes typically override.

SStteepp 55.. Complete the method toString().

Checkpoint: Your code should compile. There is no mandated format for your toString() method.
Check that it produces all the information given by the print statements in testToString. If not,
debug and retest. Another method that is typically overridden is the equals() method. You will
work with it next.

SStteepp 66.. Complete the method equals(). It has been started for you and will test to make sure
that the other object is of the same type. Complete the then clause of the if statement to check that all
the private state variables have the same value.

Checkpoint: Your code should compile and pass all the tests through testEquals(). If it fails any
tests, debug and retest. There are two final accessor methods to complete and then the mutators will
be implemented.

10 Lab 1: Objects

SStteepp 77.. Complete the method value().

SStteepp 88.. Complete the method rolledOver().

SStteepp 99.. Complete the method increase().

Check point: Your code should compile and pass all the tests through testIncrease(). If it fails any
tests, debug and retest. This is really the first test that exercises a major portion of the responsibilities
of the Counter class. Up until now the state of the class should not have been affected by the
methods. We use the accessors to test the state of the object after the mutator has been called.

SStteepp 1100.. Complete the method decrease().

Checkpoint: Your code should compile and pass all the tests. The tests in testDecrease() are similar
to what you have seen before. The decrease mutator is applied and the state is queried using the
accessors. There is a different style of test being performed by testCombined(). It tests to see if the
increase and decrease mutators are inverses of one another. Most of the time an increase followed by
a decrease should leave the object in its original state.

PPoosstt--LLaabb FFooll llooww--UUppss

1. Compare the test cases from the RationalTest class with the ones you created in the Pre-
Lab. Were there kinds of test cases that you did not consider? Were there kinds of test cases
that you proposed that were not in the RationalTest class?

2. Compare the constructors and methods from the Counter class with the methods you
proposed in the Pre-Lab. Were there methods that you did not consider? Were there methods
you proposed that were not in the Counter class? Do expectations for the methods as
expressed in the CounterTest class differ from what you expected? Can you justify your
omissions and additions?

3. Implement and test equals and toString for the Rational class.

4. Think further about a class that would represent a bank account. Give responsibilities for it.
List the variables and any constraints. Give a list of methods with their pre-conditions, post-
conditions, and test cases.

5. Think about a class that would represent a colored triangle that could be displayed on a
computer screen. Give responsibilities for it. List the variables and any constraints. Give a list
of methods with their pre-conditions, post-conditions, and test cases.

11

LLaabb 22 LLiisstt CClliieenntt

GGooaall
In this lab you will complete two applications that use the Abstract Data Type (ADT) list.

RReessoouurrcceess
• Chapter 4: Lists

• ListInterface.html—Interface documentation for the interface ListInterface

• java.sun.com/j2se/1.5.0/docs/api—API documentation for the Java List interface

JJaavvaa FFii lleess
• ListInterface.java
• AList.java
• CountingGame.java

• Primes.java

IInnttrroodduucctt iioonn
The ADT list is one of the basic tools for use in developing software applications. It is an ordered
collection of objects that can be accessed based on their position. Before continuing the lab you should
review the material in Chapter 4. In particular, review the documentation of the interface
ListInterface.java. While not all of the methods will be used in our applications, most of them
will.

The first application you will complete implements a child’s selection game. In the standard version
of this game, a group of children gather in a circle and begin a rhyme. (One such rhyme goes
“Engine, engine number nine, going down Chicago line. If the train should jump the track, will you
get your money back? My mother told me to pick the very best one and you are not it.”) Each word in
the rhyme is chanted in turn by one person in the circle. The last person is out of the game and the
rhyme is restarted from the next person. Eventually, one person is left and he or she is the lucky
individual that is selected. This application will read the number of players in the game and the
rhyme from the keyboard. The final output will be the number of the selected person. You will use
two lists in this application. The first will be a list of numbers representing the players in the game.
The second will be a list of words in the rhyme.

The second application is one that computes prime numbers.

PPrree--LLaabb VViissuuaall iizzaattiioonn

CCoouunntt iinngg GGaammee
Suppose we have six players named 1, 2, 3, 4, 5, and 6. And the rhyme has three words A, B, C. There
will be five rounds played. Fill in the players next to the part of the rhyme they say in each round.
Cross out the players as they are eliminated. As an example, the first round has been completed
already.

Lab 2 List Client12

Round 1 Round 2 Round 3 Round 4 Round 5
A 1
B 2
C 3

Eliminated Players: 1 2 3 4 5 6

Suppose we have five players named 1, 2, 3, 4, and 5. And the rhyme has six words A, B, C, D, E, F.
There will be four rounds played. Fill in the players next to the part of the rhyme they say in each
round. Cross out the players as they are eliminated.

Round 1 Round 2 Round 3 Round 4
A
B
C
D
E
F

Eliminated Players: 1 2 3 4 5

PPrriimmeess
Suppose you are interested in finding the primes between 2 and 15 inclusive. The list of candidates
would be as follows:

Candidates: 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The algorithm proceeds in rounds. In each round a single prime is discovered.

RRoouunndd 11::
Cross the first value off of the Candidates list and add it to the Primes list. Cross out any candidate
that is divisible by the prime you have just discovered and add it to the composites list.

Primes:

Composites:

Lab Manual for Data Structures and Abstractions with Java ™ 13

RRoouunndd 22::
To make the operation of the algorithm clearer, copy the contents of the lists as they appear at the
end of the previous round.

Cross the first value off of the Candidates list and add it to the Primes list. Cross out any candidate
that is divisible by the prime you have just discovered and add it to the composites list.

Candidates:

Primes:

Composites:

RRoouunndd 33::
Again, copy the contents of the lists as they appear at the end of the previous round.

Cross the first value off of the Candidates list and add it to the Primes list. Cross out any candidate
that is divisible by the prime you have just discovered and add it to the composites list.

Candidates:

Primes:

Composites:

You can complete the other rounds if you wish, but most of the interesting work has been completed.

FFiinnddiinngg CCoommppoossiitteess
The heart of this algorithm is removing the composite values from the candidates list. Let’s examine
this process more closely. In the first round, after removing the 2, the list of candidates is

Candidates: 3 4 5 6 7 8 9 10 11 12 13 14 15

How many values are in the list?

Lab 2 List Client14

The first value to be examined is the 3. What is its index?

The second value to be examined is the 4. What is its index?

Since it is divisible by 2, we need to remove it from the list of candidates. What is the new list of
candidates after the 4 is removed?

Candidates:

The third value to be examined is the 5. What is its index?

The fourth value to be examined is the 6. What is its index?

Since it is divisible by 2, we need to remove it from the list of candidates. What is the new list of
candidates after the 6 is removed?

Candidates:

The fifth value to be examined is the 7. What is its index?

Can you simply loop over the indices from 1 to 13 to examine all the candidates?

Develop an algorithm to examine all the values in the candidates list and remove them if they are
divisible by the given prime.

Lab Manual for Data Structures and Abstractions with Java ™ 15

DDiirreecctteedd LLaabb WWoorrkk

CCoouunntt iinngg GGaammee
Pieces of the CountingGame class already exist and are in CountingGame.java. Take a look at that
code now if you have not done so already. Also, before you start make sure you are familiar with the
methods available to you in the AList class (check ListInterface.html).

SStteepp 11.. Compile the classes CountingGame and AList. Run the main method in CountingGame.

Checkpoint: If all has gone well, the program will run and accept input. It will then generate a null
pointer exception. The goal now is to create the list of players.

SStteepp 22.. Create a new Alist<Integer> and assign it to players.

SStteepp 33.. Using a loop, add new objects of type Integer to the players list.

Checkpoint: Compile and run the program. Enter 3 for the number of players. The program should
print out
{ <1> <2> <3> } for the players list. The next goal is to do one round of the game. It will be
encapsulated in the method doRhyme().

SStteepp 44.. Complete the doRhyme() method. Use the following algorithm.

FFoorr eeaacchh wwoorrdd iinn tthhee rrhhyymmee
PPrriinntt tthhee wwoorrdd iinn tthhee rrhhyymmee aanndd tthhee ppllaayyeerr tthhaatt ssaayyss iitt ..
PPrriinntt tthhee nnaammee ooff tthhee ppllaayyeerr ttoo bbee rreemmoovveedd..
RReemmoovvee tthhaatt ppllaayyeerr ffrroomm tthhee lliisstt..
RReettuurrnn tthhee iinnddeexx ooff tthhee ppllaayyeerr tthhaatt wwiill ll ssttaarrtt tthhee nneexxtt rroouunndd..

SStteepp 55.. Call doRhyme(players, rhyme, position) in main after the call to getRhyme().

SStteepp 66.. Print out the new player list.

Checkpoint: Compile and run the program. Enter 6 for the number of players. Enter A B C for the
rhyme. It should print out something similar to

Player 1: a
Player 2: b
Player 3: c
Removing player 3
The players list is { <1> <2> <4> <5> <6> }

Enter 5 for the number of players. Enter A B C D E F for the rhyme. Compare your result with your
answers in the Pre-Lab. Reconcile any differences. The final goal is to do multiple rounds.

SStteepp 77.. Wrap the lines of code from the previous two steps in a while loop that continues as long
as there is more than one player left.

Final checkpoint: Compile and run the program. Enter 6 for the number of players. Enter A B C for
the rhyme. The players should be removed in the order 3, 6, 4, 2, 5. The winner should be player 1.

Enter 5 for the number of players. Enter A B C D E F for the rhyme. Compare your result with your
answers in the Pre-Lab Exercises. Reconcile any differences.

Lab 2 List Client16

PPrriimmeess
The skeleton of the Primes class already exists and is in Primes.java.

SStteepp 11.. Look at the skeleton in Primes.java. Compile Primes. Run the main method in Primes.

Checkpoint: If all has gone well, the program will run and accept input. It will then end. The goal
now is to create the list of candidates.

SStteepp 22.. In main declare and create the Candidates list. Add in the values.

SStteepp 33.. Print out the candidates list.

Checkpoint: Compile and run the program. Enter 7 for the maximum value. You should see the list
{ <2> <3> <4> <5> <6> <7> }. The next goal is to do a single round finding a prime in the Candidates
list.

SStteepp 44.. In main declare and create the Primes and Composites lists.

SStteepp 55.. Remove the first value from the primes list and store it in an Integer variable.
Remember to type cast the value returned by remove().

SStteepp 66.. Print out the prime that was discovered.

SStteepp 77.. Add it to the primes list.

SStteepp 88.. Print out all three lists.

Checkpoint: Compile and run the program. Enter 7 for the maximum value. The value 2 should be
removed from the Candidates list and added to the Primes. Now all values that are divisible by the
Prime should be removed from the Candidates list and added to the Composites list. This procedure
will be encapsulated in the method getComposites().

SStteepp 99.. Refer to the Pre-Lab Exercises and complete the getComposites() method. To determine
if one integer value is divisible by another, you can use the modulus operator (% in Java).

SStteepp 1100.. Between the code from steps 7 and 8, call getComposites().

Checkpoint: Compile and run the program. Enter 15 for the maximum value. Compare the results
with the Pre-Lab Exercises. Reconcile any differences.

Just as in the counting game, a loop will be used to do the rounds.

Lab Manual for Data Structures and Abstractions with Java ™ 17

SStteepp 1111.. Wrap the code from steps 5 through 8 in a while loop that continues as long as the
Candidates list is not empty.

Final checkpoint: Compile and run the program. Enter 15 for the maximum value. Compare the
results with the Pre-Lab Exercises. Reconcile any differences.

Run the program with 100 as the maximum value. Carefully verify your results.

PPoosstt--LLaabb FFooll llooww--UUppss

1. Modify the counting game program to compute the winning player for all sizes of player lists
up to the input value. Complete a table for player lists up to size 20 with a rhyme of length 3.
Can you discover a relation between the size of the player list and the winning player?

2. After a certain point, all the remaining values in the candidates list are prime. Modify the
program to just copy values directly when that point has been reached.

3. Write a program that will get a list of words and then remove any duplicates.

4. Write a program that will get two lists of words and will create a third list that consists of
any words in common between the two input lists.

5. Write a program that will read in a list of words and will create and display two lists. The
first list will be the words in odd positions of the list. The second list will be all the remaining
words.

6. Write a program that will get a list of integer values and determine if all the values are
relatively prime. Two values are relatively prime if they share no common factors. For
example, the values 10 and 77 are relatively prime, but 10 and 55 are not.

19

LLaabb 33 AArrrraayy BBaasseedd LLiisstt IImmpplleemmeennttaatt iioonn

GGooaall
In this lab you will explore the implementation of the ADT list using arrays. You will take an existing
implementation and create new methods that work with that implementation. You will override the
equals method so that it will determine if two lists are equal based on their contents. You will
implement a swap method that will exchange two items in the list. You will implement a reverse

method that will reverse the order of the items in the list. Finally, you will implement a cycle
method that will move the first item in the list to the last position.

RReessoouurrcceess
• Chapter 2: Creating Classes from Other Classes

• Chapter 4: Lists

• Chapter 5: List Implementations That Use Arrays

• ListInterface.html—Interface documentation for the interface ListInterface

JJaavvaa FFii lleess
• ListInterface.java
• AList.java

• ListExtensionsTest.java

IInnttrroodduucctt iioonn
As was seen in the last lab, a list is an ordered collection of elements supporting basic operations such
as add and remove. One way to implement a list is to use an array. The other standard implementa-
tion is a linked structure (which will be investigated in the next lab). In this lab, you will take a
working implementation and create some new methods. If you have not done so already, take a
moment to examine the code in AList.java.

Consider the code that implements the add method.
public boolean add(int newPosition, T newEntry) {

boolean isSuccessful = true;

if (isArrayFull())
doubleArray();

if ((newPosition >= 1) && (newPosition <= length+1)) {
makeRoom(newPosition);
list[newPosition-1] = newEntry;
length++;

}
else

isSuccessful = false;

return isSuccessful;
} // end add

private void makeRoom(int newPosition) {
assert (newPosition >= 1) && (newPosition <= length + 1);
int newIndex = newPosition - 1;
int lastIndex = length - 1;
// move each entry to next higher index, starting at end of
// array and continuing until the entry at newIndex is moved
for (int index = lastIndex; index >= newIndex; index--)

list[index + 1] = list[index];
} // end makeRoom

20 Lab 3: Array Based List Implementation

Let’s trace the last statement in the following code fragment.

AList<String> x = new AList<String>(5);
x.add("a");
x.add("b");
x.add("c");
x.add("d");
x.add(2, "x"); // trace this one

The initial state of the object is

The variable isSuccessful is initialized.
The array is not full, so the condition (isArrayFull()) is false.

newPosition: 2
object : "x"
isSuccessful: true

The condition ((newPosition >= 1) && (newPosition <= length+1)) is true, so makeRoom(2) is
invoked. The first execution of the body of the loop results in the following state.

newPosition: 2
index: 4

Lab Manual for Data Structures and Abstractions with Java ™ 21

The second execution of the body of the loop results in the following state.

newPosition: 2
index: 3

The third and final execution of the body of the loop (index >= newPosition) results in the
following state.

newPosition: 2
index: 2

The makeRoom() method returns and the next line puts the object into the array.

newPosition: 2
object : "x"
isSuccessful: true

The final statement before the add() method returns adjusts the length, resulting in the final state of
the list.

Notice that to the client, the position of the first item in the list is 1. Internally, however, the AList
implementation stores the first item at index 0 of the array.

22 Lab 3: Array Based List Implementation

The first thing that you will do in this lab is to override the equals method. Every class inherits the
equals method from the class Object. The inherited method determines if two objects are equal
based on their identity. Only if two objects are located at the same memory location will the equals
method return true. Instead of this, we need to know if two lists are the same based on whether their
contents are the same. The new version of equals will then be used to decide if the implementations
of other methods you create are correct. Once the equals method has been completed correctly, the
other three methods can be completed in any order.

The swap operation will be an exchange of neighbors. The general form of swapping allows you to
exchange any two items and is a widely used operation in many sorting algorithms. Our version of
swap will be limited to swapping neighboring items. (This will be easier to implement in the next lab
which deals with a linked representation.) The swap method will take as its only argument the
position of the second item to be swapped. So swap(5) will exchange the fourth and fifth items in the
list. To be consistent with the other methods in the ListInterface, it will return a boolean value
that indicates a successful swap. It will fail if the value of the second position is not valid.

One way that the swap() method could be implemented is shown in the following code, which uses
the public methods of the ListInterface.

public boolean swap(int secondPosition)
{

boolean result = false;
if (secondPosition > 1

&& secondPosition <= getLength())
{

T x = remove(secondPosition);
boolean removeGood = (x != null);
boolean addGood = add(secondPosition-1, x);
result = removeGood && addGood;

}
return result;

}

This code has the advantage of not needing to change if the implementation of the class changes. On
the other hand, it may be less efficient than a method that directly accesses the private variables of the
class. Since the goal of the lab is to become more familiar with the array implementation of the AList,
you will work directly with the entry array and will not use methods from the interface like add() or
remove().

The cycle operation can be used in a number of different applications. One example is a list of days in
the week. At the start of the week, the list is (Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday). As each day passes, the list will be cycled by moving the first item to the end of the
list. On Monday, for example, the list will be cycled to (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday).

Lab Manual for Data Structures and Abstractions with Java ™ 23

PPrree--LLaabb VViissuuaall iizzaattiioonn

EEqquuaallss
One way to determine that two lists are equal is by comparing corresponding items. Consider the
following two lists. Which items need to be compared to determine that they are equal?

Consider the following two lists. Which items need to be compared to determine that they are not
equal?

24 Lab 3: Array Based List Implementation

Give an example of two lists that cannot be equal, yet no item comparisons are needed to make that
determination.

Write an algorithm that returns true if the items in two lists are pairwise equals.

Lab Manual for Data Structures and Abstractions with Java ™ 25

SSwwaapp
Suppose there is a list with the following state:

What will the final state be after swap(3)? Remember that the item in position 3 of the list has index
2.

To reach the final state, follow these steps. Show the state of the list after each step.

a. Remember the value of the second item to be swapped.

b. Copy the first item into the position of the second item.

26 Lab 3: Array Based List Implementation

c. Copy the remembered value in the position of the first item.

Write an algorithm to implement swap.

RReevveerrssee
Suppose there is a list with the following state:

What will the final state be after reverse()?

To reach the final state, follow these steps. Show the state of the list after each step.

a. Swap the items in the first and last positions.

Lab Manual for Data Structures and Abstractions with Java ™ 27

b. Swap the items in the second and second to last positions.

c. Swap the items in the third and third to last positions.

To be general, a loop will be needed.

If there are n items in the list, what will be the indices of the first items in the swaps?

What will be the indices of the second items in the swaps?

Write an algorithm to implement reverse.

28 Lab 3: Array Based List Implementation

CCyyccllee
Suppose there is a list with the following state:

What will the final state be after cycle()?

To reach the final state, follow these steps. Show the state of the list after each step.

a. Remember the first item.

b. Copy each item down one position.

c. Copy the remembered item to the last position.

Again, a loop will be needed.

Lab Manual for Data Structures and Abstractions with Java ™ 29

If there are n items in the list, what are the indices of the items that are copied?

What are the indices of the locations that the items are copied into?

Write an algorithm to implement cycle.

DDiirreecctteedd LLaabb WWoorrkk

The AList class is a working implementation of the ListInterface.java. The four methods you
will be working on already exist but do not function yet. Take a look at that code now if you have not
done so already.

EEqquuaallss
SStteepp 11.. Compile the classes ListExtensionsTest and AList. Run the main method in
ListExtensionsTest.

Checkpoint: If all has gone well, the program will run and the test cases for the four methods that will
be implemented will execute. Don’t worry yet about the results of the tests yet. The goal now is to
finish the implementation of each of our methods one at a time.

SStteepp 22.. In the equals method of AList, implement your algorithm from the Pre-Lab Exercises.
Some kind of iteration will be required in this method.

Checkpoint: Compile and run ListExtensionsTest. The tests for equals should all pass. If not,
debug and retest.

SSwwaapp
SStteepp 11.. In the swap method of AList, check the argument to make sure it is good. If it is not,
return false. Don’t forget to change the return statement.

Checkpoint: Compile and run ListExtensionsTest. The first two tests of checkSwap should pass. If
not, debug and retest.

SStteepp 22.. Complete the implementation of your algorithm from the Pre-Lab Exercises. No iteration
is needed for this method. Don’t forget to change the return statement.

SStteepp 33.. Before compiling, check to make sure that the code is working with the correct elements
in the entry array. Remember that the item in position 3 of the list is at index 2 of the array.

Checkpoint: Compile and run ListExtensionsTest. All tests up through checkSwap should pass. If
not, debug and retest.

30 Lab 3: Array Based List Implementation

RReevveerrssee
SStteepp 44.. In the reverse method of AList, implement your algorithm from the Pre-Lab Exercises.
Iteration is needed.

Checkpoint: Compile and run ListExtensionsTest. All tests up through checkReverse should
pass. If not, debug and retest.

CCyyccllee
SStteepp 55.. In the cycle method of AList, implement your algorithm from the Pre-Lab Exercises.
This method needs some form of iteration, but it may not be explicit. It can use the private methods of
the AList class to avoid an explicit loop in the cycle method. Either way is acceptable.

Final checkpoint: Compile and run ListExtensionsTest. All tests should pass. If not, debug and
retest.

PPoosstt--LLaabb FFooll llooww--UUppss

1. Create test cases for the other methods in AList.

2. Would the equals() method work if one of the items in the list was null? Create test cases
for this situation and redo the equals code if it does not pass.

3. In a list of size 10, how many assignments are made using the entry array if we swap

positions 5 and 6?

4. In a list of size 10, how many assignments are made using the entry array by the reverse
method?

5. In a list of size 10, how many assignments are made using the entry array by the cycle
method?

6. Implement the general form of the swap method using direct access to the entry array.

boolean swap(int first, int second){
...
}

7. Implement the general swap method using only the public methods in ListInterface.

8. Implement the reverse method using only the public methods in ListInterface.

31

LLaabb 44 LLiinnkk BBaasseedd LLiisstt IImmpplleemmeennttaatt iioonn

GGooaall
In this lab you will explore the implementation of the ADT list using a linked chain. To allow you to
see the difference with the array implementation, the methods you will implement will be the same
as in the previous lab (equals, swap, reverse, and cycle).

RReessoouurrcceess
• Chapter 2: Creating Classes from Other Classes

• Chapter 4: Lists

• Chapter 6: List Implementations That Link Data

• Chapter 7: Completing the Linked Implementation of a List

• ListInterface.html—Interface documentation for the interface ListInterface

JJaavvaa FFii lleess
• ListInterface.java
• LList.java
• ListExtensionsTest.java

IInnttrroodduucctt iioonn
In the last lab, you saw an array implementation of the ADT list. In this lab, you will work with a
singly linked chain. If you have not done so already, take a moment to examine the code in
LList.java.

Consider the code that implements the add operation.

public boolean add(int newPosition, T newEntry)
{

boolean isSuccessful = true;

if ((newPosition >= 1) && (newPosition <= length+1))
{

Node newNode = new Node(newEntry);
if (isEmpty() || (newPosition == 1)) // case 1
{

newNode.next = firstNode;
firstNode = newNode;

}
else // case 2: newPosition >1, list is not empty
{

Node nodeBefore = getNodeAt(newPosition - 1);
Node nodeAfter = nodeBefore.next;
newNode.next = nodeAfter;
nodeBefore.next = newNode;

} // end if
length++;

}
else

isSuccessful = false;
return isSuccessful;

} // end add

Lab 4 Link Based List Implementation32

Let’s trace the last statement in the following code fragment.

LList<String> x = new LList()<String>;
x.add("a");
x.add("b");
x.add("c");
x.add("d");
x.add(2, "x"); // trace this one

The initial state of the object is

The condition ((newPosition >= 1) && (newPosition <= length+1)) is true.
A new node is created.

newPosition: 2
object : "x"
isSuccessful: true

The condition (isEmpty() || (newPosition == 1)) is false since the insertion is not at the front of
the list. The else branch is chosen. The local variable nodeBefore is set to getNodeAt(1). Then the
variable nodeAfter is set.

newPosition: 2
object : "x"
isSuccessful: true

Lab Manual for Data Structures and Abstractions with Java ™ 33

The next reference for the new node is set to be the node after the insertion point.

newPosition: 2
object : "x"
isSuccessful: true

Finally, the new node is linked into the list by setting the next reference of the node before and the
length is updated.

newPosition: 2
object : "x"
isSuccessful: true

As in the last lab, the first task is to override the equals method. The same basic algorithm will be
used as last time except that there is no direct access to the elements. Instead two references, one to
each list, will be used to scan across the elements.

The other methods will all require list surgery. The values in the nodes will not be changed, only the
links. Unfortunately, if you are not careful, the list will not survive the surgery. Let’s see how you
could get into trouble.

Lab 4 Link Based List Implementation34

The change that will be made is not inherently dangerous. The variable nodeAfter is not absolutely
necessary. It can be replaced by its definition in the two lines that do the list surgery.

newNode.next = nodeBefore.next;
nodeBefore.next = newNode;

Once this has been done, the order that the surgery is done becomes critical. Suppose the order of the
two lines is switched.

nodeBefore.next = newNode;
newNode.next = nodeBefore.next;

Two bad things happen. The last part of the list is lost and the part of the list that isn’t lost becomes
circular.

The advantage of using the variable nodeAfter is that the order of the two surgery statements does
not matter.

To avoid problems with surgery, it is always a good idea to trace carefully the intended operation of
methods before implementing the code.

PPrree--LLaabb VViissuuaall iizzaattiioonn

SSwwaapp
Suppose there is a list with the following state:

Lab Manual for Data Structures and Abstractions with Java ™ 35

What will the final state be after swap(3)?

To reach the final state, follow these steps. Show the state of the list after each step.

a. Remember the position of every node in the list that had its link changed.

b. Change the link so that the node before the two swapped nodes now references the
second node in the swap.

c. Change the link of the second node in the swap so that it now references the first node in
the swap.

Lab 4 Link Based List Implementation36

d. Change the link of the first node in the swap so that it now reference the node after the
two swapped nodes.

Suppose there is a list with the following state:

What will the final state be after swap(2)?

This is a special case that you need to take care of. The difference between the two examples is that
one involves change a to firstNode and the other does not. The steps used are similar.

Write an algorithm for the general case of the swap operation (the first item in the list is not one of the
pair of items to be swapped).

What changes need to be made to the general algorithm to handle the special case where the first item
in the list is one of the pair of items to be swapped?

Lab Manual for Data Structures and Abstractions with Java ™ 37

RReevveerrssee
The algorithm that will be used to reverse the linked chain is very different from that used with the
array implementation. No swaps will be done, but instead the links will be altered in a single pass
over the list.

Suppose there is a list with the following state:

What will the final state be after reverse()?

To reach the final state, follow these steps. Show the state of the list after each step.

a. Use three variables to reference the first three nodes in the list.

b. Make the first node’s next reference be null.

Lab 4 Link Based List Implementation38

c. Make the second node’s next reference be the first node. Change all three reference
variables so that they move forward by one with respect to the original list.

d. Make the third node’s next reference be the second node. Change all three reference
variables so that they move forward by one with respect to the original list.

e. Make the fourth node’s next reference be the third node.

f. Change the variable firstNode so that it references the fourth node.

Lab Manual for Data Structures and Abstractions with Java ™ 39

To be general, a loop will be needed. Write an algorithm for the reverse operation.

Consider each of the following cases and decide if the algorithm handles it correctly.

i. A list with no elements
ii. A list with one element
iii. A list with two elements

CCyyccllee
Suppose there is a list with the following state:

What will the final state be after cycle()?

Lab 4 Link Based List Implementation40

To reach the final state, follow these steps. Show the state of the list after each step.

a. Remember the position of the second node in the list. Find and remember the position of
the last node in the list.

b. Make the last node’s next reference be the first node.

c. Change the variable firstNode so that it references the second node.

d. Make the former first node’s next reference be null.

Lab Manual for Data Structures and Abstractions with Java ™ 41

Write an algorithm for the cycle operation.

Consider each of the following cases and decide if the algorithm handles it correctly.

i. A list with no elements.
ii. A list with one element.
iii. A list with two elements.

DDiirreecctteedd LLaabb WWoorrkk
The LList class is a working implementation of the ListInterface.java. The four methods you
will be working on already exist but do not function yet. Take a look at that code now if you have not
done so already.

EEqquuaallss
SStteepp 11.. Compile the classes ExtensionsTest and LList. Run the main method in
ExtensionsTest.

Checkpoint: If all has gone well, the program and the test cases will run for the four methods that will
be implemented. The goal now is to finish the implementation of each of our methods one at a time.

SStteepp 22.. In the equals method of LList, implement your algorithm from the Pre-Lab Exercises.
Don’t forget that you will need two references, one for each list. As the iteration progresses, both
references will move in synch.

Checkpoint: Compile and run ListExtensionsTest. The tests for equals should all pass. If not,
debug and retest. We will implement the swap in two parts. First the general case will be completed.

SSwwaapp
SStteepp 11.. In the swap method of LList, check the argument to make sure it is good. If it is not,
return false. Don’t forget to change the return statement.

Checkpoint: Compile and run ListExtensionsTest. The first two tests of checkSwap should pass. If
not, debug and retest.

SStteepp 22.. Now implement just your general algorithm from the Pre-Lab Exercises. Iteration will be
needed in this method to find the nodes to be swapped.

Checkpoint: Compile and run ListExtensionsTest. The first five tests of checkSwap should pass. If
not, debug and retest.

Lab 4 Link Based List Implementation42

SStteepp 33.. Now add in code to test for and implement the special case.

Checkpoint: Compile and run ListExtensionsTest. All tests up through checkSwap should pass. If
not, debug and retest.

RReevveerrssee
SStteepp 44.. In the reverse method of LList, implement your algorithm from the Pre-Lab Exercises.
Iteration is needed.

Checkpoint: Compile and run ListExtensionsTest. All tests up through checkReverse should
pass. If not, debug and retest.

CCyyccllee
SStteepp 55.. In the cycle method of LList, implement your algorithm from the Pre-Lab Exercises.

Final checkpoint: Compile and run ListExtensionsTest. All tests should pass. If not, debug and
retest.

PPoosstt--LLaabb FFooll llooww--UUppss
1. In a list of size 10, how many times is a next reference accessed or changed if we swap

positions 5 and 6? Compare this with the answer to the Post-Lab question from the previous
lab.

2. In a list of size 10, how many times is a next Post-Lab question accessed or changed by the
reverse method? Compare this with the results from the previous lab.

3. In a list of size 10, how many times is a next reference accessed or changed by the cycle
method? Compare this with the results from the previous lab.

4. Implement the general form of the swap method using manipulation of the next references.

boolean swap(int first, int second)
{
...
}

5. Consider an implementation where a node has references both to the previous and next
nodes. Sketch out the operations needed to implement the method.

public boolean add(int newPosition, Object newEntry)

6. Consider an implementation where a node has references both to the previous and next
nodes. Sketch out the operations needed to implement the method.

public boolean swap(int secondPosition)

7. Implement the LList class using nodes with next and previous references. Use the test cases
from the previous lab’s follow-up questions if you did them. If not, create test cases and test
your code.

43

LLaabb 55 IItteerraattoorrss

GGooaall
In this lab you will implement three client applications that use lists with iterators.

RReessoouurrcceess
• Chapter 4: Lists

• Chapter 5: List Implementations That Use Arrays

• Chapter 8: Iterators

• ListInterface.html—documentation for the interface ListInterface

• ListWithListIteratorInterface.html—documentation for the interface
ListWithListIteratorInterface

• java.sun.com/j2se/1.5.0/docs/api—API documentation for the Java Iterator interface

• java.sun.com/j2se/1.5.0/docs/api—API documentation for the Java ListIterator

interface

JJaavvaa FFii lleess

• ListInterface.java

• ListWithListIteratorInterface.java
• ArrayListWithListIterator.java
• CountingGame.java
• Primes.java

• Subsequence.java

IInnttrroodduucctt iioonn
An iterator is an object that allows you to access the items stored in a data structure sequentially. This
has two major advantages. The first advantage is that because many very different kinds of data
structures have iterators defined for them, code can be written that will work independent of the
choice of data structure. That code is protected against changes in data structure. For example, using
Java’s ListIterator, here is code that will remove all items from a data structure holding items of
type X.

ListIterator<X> toClear = someDataStructure.getIterator();
while(toClear.hasNext())
{

toClear.next();
toClear.remove();

}

As long as the object someDataStructure has implemented the method getIterator(), the rest of
the code is insulated from change. Since sequential access to a collection of items is very common,
iterators are fairly useful.

The second advantage is that the iterator may be specialized to provide fast sequential access to the
items in the collection. For example, consider a list that uses a linked chain. The items in a simple
singly-linked chain could be accessed one at a time using a get-entry method. The only problem with
this is that each time a get-entry executes, the chain must be traversed from the front. An iterator
would be able to keep a reference to the nodes in the linked chain and would not have to restart from
the beginning for each access.

In this lab, you will implement the counting game and primes applications from Lab 2 using iterators.
You will be develop a third application that, given two sequences of objects, will determine if the first
is a subsequence of the second. Before discussing what a subsequence is, consider the following
formal definition.

Lab 5 Iterators44

Given X = < x1, x2, …, xn> a sequence of length n greater than or equal to zero and Y = < y1, y2, …, ym>
a sequence of length m greater than or equal to zero, the function subsequence(X, Y) is true if and
only if there exists a strictly increasing sequence of indices K = < k1, k2, …, kn > such that every
element xi is equal to yj where j = ki .

Consider the following sequences.

X = < a b a > and Y = < b c a c b a>

X is a subsequence of Y because you can find a sequence of indices that satisfies the requirements.

K = < 3 5 6>
x1 = a is equal to y3 = a
x2 = b is equal to y5 = b
x3 = a is equal to y6 = a

Notice that items in X must in the same order in Y but need not be consecutive. Also, because the
indices in K must be strictly increasing, we cannot reuse a value in Y. Here are some examples of
pairs that are not subsequences.

X = < a b a a> and Y = < b c a c b a>
X = < a b a > and Y = < b c a c b >
X = < a b c> and Y = < b c a c b a>

Many students are surprised to learn that the following pair is a subsequence.

X = < > and Y = < b c a c b a>

In this, case X is a subsequence of Y because you can find a sequence of indices, K = < >, that satisfies
the requirements. Notice that every element in X is equal to an element of Y trivially. If this were not
the case, you would be able to demonstrate an element from X that is not equal to the selected
element of Y.

PPrree--LLaabb VViissuuaall iizzaattiioonn

SSuubbsseeqquueennccee
Come up with an example of two sequences X and Y where you can guarantee that X is not a
subsequence of Y without having to look at the values of the items in the sequences.

Lab Manual for Data Structures and Abstractions with Java ™ 45

Consider the sequences

X = < a b c a >
Y = < b c d a e c a e a f b a b b d e c d e a b d >

MMaattcchh 11::
The first “a” in X must be matched with an “a” in Y.

Can it be safely matched with the first “a” in Y? (Safe in the sense that it does not prevent us from
matching a later item from X.)

Can any items before the first “a” in Y be matched with an item from X?

What positions in Y must be checked to find the “a” ?

Cross out the items from both lists that have been checked to make the first match.

X = < a b c a >

Y = < b c d a e c a e a f b a b b d e c d e a b d >

MMaattcchh 22::
The “b” in X must be matched with a “b” in Y.

What positions in Y must be checked to find the “b”?

Cross out the items from both lists that have been checked to make the first and second matches.

X = < a b c a >

Y = < b c d a e c a e a f b a b b d e c d e a b d >

Lab 5 Iterators46

MMaattcchh 33::
The “c” in X must be matched with a “c” in Y.

What positions in Y must be checked to find the “c”?

Cross out the items from both lists that have been checked to make the first three matches.

X = < a b c a >

Y = < b c d a e c a e a f b a b b d e c d e a b d >

MMaattcchh 44::
The second “a” in X must be matched with an “a” in Y.

What positions in Y must be checked to find the “a”?

Cross out the items from both lists that have been checked to make the first four matches.

X = < a b c a >

Y = < b c d a e c a e a f b a b b d e c d e a b d >

An iterator is appropriate if you checked the values sequentially. Did you check the values in both X
and Y sequentially?

Develop an algorithm to detect a subsequence that uses two iterators (one Iterator for each
sequence). It may be helpful to first develop an algorithm that works with two arrays. Looking at a
value in the array, corresponds to doing a next(). Limit tests on the indices correspond with
hasNext().

Lab Manual for Data Structures and Abstractions with Java ™ 47

Does the algorithm work if:

i. X is an empty sequence
ii. X is a sequence of length one
iii. Y is an empty sequence
iv. Y is a sequence of length one.

CCoouunntt iinngg GGaammee
Write an algorithm for displaying all the items in a list using an Iterator.

One of the tasks needed in the counting game is to fill the player’s list. Show how you can use an
iterator to add all of the players.

Look at the code from Lab 2 for doRhyme(). It will be modified to use iterators. There are some major
changes to the signature of doRhyme(). Instead of taking two lists as parameters, it will take two
iterators. The integer parameter startAt is no longer needed, as the iterator to the player list will
specify the location. No return value is needed either, since the state of the player list iterator will
change.

Give an algorithm that accomplishes the same task using two list iterators (one for each list). Notice
that the rhyme will start at the current entry in the player list. (You can use the previous() method
from ListIterator to go backwards in the list when it is time to go back to the beginning of the list.)

Lab 5 Iterators48

FFiinnddiinngg CCoommppoossiitteess
Look at the code from Lab 2 for getComposites(). It will be modified to use an iterator. Since
getComposites always starts at the beginning of the list, it will take the list as a parameter and get its
own iterator. If the iterator is passed in from the outside, getComposites would have to rely on that
code to initialize the iterator correctly, and this is dangerous.

Give an algorithm using an iterator.

DDiirreecctteedd LLaabb WWoorrkk

SSuubbsseeqquueennccee
Pieces of the Subsequence class already exist and are in Subsequence.java. Take a look at that code
now if you have not done so already.

SStteepp 11.. Compile the class Subsequence. Run the main method in Subsequence.

Checkpoint: If all has gone well, the program will run and accept two lines of words for input. It will
fail most test cases.

SStteepp 22.. Refer to your algorithm from the Pre-Lab Exercises and complete the subSequence()
method.

Final checkpoint: Compile and run the program. All tests should pass. If not, debug the code so that it
works correctly.

CCoouunntt iinngg GGaammee
Pieces of the CountingGame class already exist and are in CountingGame.java. Take a look at that
code now if you have not done so already.

SStteepp 11.. Compile the class CountingGame. Run the main method in CountingGame.

Checkpoint: If all has gone well, the program will run and accept input. It will then declare null the
winner. The goal now is to create the list of players.

SStteepp 22.. Use the add() method to add the first player to the list.

SStteepp 33.. Refer to the Pre-Lab Exercises and use a loop with an iterator to add the rest of the
players to the list.

Checkpoint: Compile and run the program. The program should accept input and then declare that
player 1 is the winner. The next goal is to complete code that will allow collections to be displayed
given an iterator.

Lab Manual for Data Structures and Abstractions with Java ™ 49

SStteepp 44.. Compete the displayCollection() method. Refer to the Pre-Lab Exercises and use a
loop with the iterator that is passed into the method. The desired format is opening and closing
braces with spaces separating all the items. Use print() instead of println() so it will all be on the
same line.

Checkpoint: Compile and run the program. The program should accept input, print the player list,
and then declare that player 1 is the winner. The next goal is to do one round of the game. As before,
it is encapsulated in the method doRhyme().

SStteepp 55.. Complete the doRhyme() method. Refer to your algorithm from the Pre-Lab Exercises.

Checkpoint: Compile and run the program. Enter 6 for the number of players. Enter A B C for the
rhyme. It should print out something similar to

Player 1: a
Player 2: b
Player 3: c
Removing player 3
The players list is { 1 2 4 5 6 }

Enter 5 for the number of players. Enter A B C D E F for the rhyme. Compare your result with your
answers in the Pre-Lab Exercises from Lab 2. Reconcile any differences.

SStteepp 66.. Remove the // from the while loop in main.

Final checkpoint: Compile and run the program. Enter 6 for the number of players. Enter A B C for
the rhyme. The players should be removed in the order 3, 6, 4, 2, 5. The winner should be player 1.

Enter 5 for the number of players. Enter A B C D E F for the rhyme. Compare your result with your
answers in the Pre-Lab Exercises from Lab 2. Reconcile any differences.

PPrriimmeess
The skeleton of the Primes class already exists and is in Primes.java.

SStteepp 11.. Look at the skeleton in Primes.java. Compile Primes. Run the main method in Primes.

Checkpoint: If all has gone well, the program will run and accept input. It will create the list of
candidate values and display them before quitting.

SStteepp 22.. Use an iterator to print out the values in the candidates list at the indicated location in
main.

SStteepp 33.. Use an iterator to print out the values in the primes list at the indicated location in main.

SStteepp 44.. Use an iterator to print out the values in the composites list at the indicated location in
main.

Checkpoint: Compile and run the program. Enter 7 for the maximum value. You should see 2 3 4 5 6
7 for the candidates, 2 for the primes, and nothing for the composites. The next goal is to complete the
process of removing the composite values from the candidates list. As before, it will be encapsulated
in the getComposites() method.

SStteepp 55.. Refer to the Pre-Lab Exercises and complete the getComposites() method.

Checkpoint: Compile and run the program. Enter 15 for the maximum value. Compare the results
with the Pre-Lab Exercises from Lab 2. Reconcile any differences

Lab 5 Iterators50

SStteepp 66.. Remove the // from the while loop in main.

Final checkpoint: Compile and run the program. Enter 15 for the maximum value. Compare the
results with Pre-Lab Exercise from Lab 2. Reconcile any differences.

Run the program with 100 as the maximum value. Carefully verify your results.

PPoosstt--LLaabb FFooll llooww--UUppss
1. Write a program using iterators that finds the longest strictly increasing subsequence in a

sequence of integer values.

2. A Set is a collection of values that does not include duplicates and order does not matter. It
will have the following methods:

o toString()
o equals(Object)
o subset(Set)
o isMember(Object)
o add(Object)
o remove(Object)

Write test cases for each of the methods. NNoottee : A is a subset of B if every item in A is also in
B. A equals B if they agree on membership for all values. For example, { a b } equals { b a } is a
subset of { c b a }. If x is added to a set A, and x is already a member of A, A does not change.

Implement Set using the ArrayListWithListIterator class. Each of the methods (with the
possible exception of add) should be implemented using iterators.

3. A Bag is a collection of values that may include duplicates. As with a set, order does not
matter. It will have the following methods:

o toString()
o equals(Object)
o subbag(Bag)
o isMember(Object)
o count(Object)
o add(Object)
o remove(Object)

Write test cases for each of the methods. NNoottee: A is a subbag of B if the count of every value
x in A is less than the count of x in B. Two bags are equal if the count of every value x is the
same for both bags. For example, { a b b } equals { b a b } is a subbag of { c b a b b }. Adding x
to a bag will increase x’s count by 1. Removing x will decrease its count by 1.

Implement Bag using the ArrayListWithListIterator class. Each of the methods (with the
possible exception of add) should be implemented using iterators.

4. Change getRhyme in CountingGame so that it uses an iterator to construct the list.

5. Modify Primes so that is uses the built-in Java class ArrayList. Refer to the Java API
documentation.

51

LLaabb 66 RReeccuurrss iioonn——PPaarrtt II

GGooaall
In this lab you will design and implement recursive algorithms. The primary focus in this lab will be
algorithms that make a single recursive call. Tail recursion will be explored. An improved recursive
algorithm for computing Fibonacci numbers will be developed.

RReessoouurrcceess
• Chapter 10: Recursion

• Lab6Graphs.pdf—Printable versions of the graphs for this lab

JJaavvaa FFii lleess
• Count.java
• RecursiveFactorial.java
• TestFactorial.java
• RecursiveStringReplace.java
• TestReplace.java
• RecursiveFibonacci.java
• TestFibonacci.java
• TimeFibonacci.java

WWaarrnniinngg:: TThhee iinnttrroodduuccttiioonn aanndd PPrree--LLaabb mmaatteerriiaallss ffoorr tthhiiss llaabb aarree lleennggtthhyy.. MMaakkee ssuurree
ttoo ssttaarrtt eeaarr llyy ttoo ggiivvee yyoouurrsseellff eennoouugghh ttiimmee ttoo ccoommpplleettee tthheemm bbeeffoorree tthhee llaabb..

IInnttrroodduucctt iioonn
Recursion is an important technique that shows up in diverse areas of computer science, such as the
definition of computer languages, the semantics of programs, the analysis of algorithms, data
structure definitions, and algorithms. Some of the better algorithms are either recursive or based on
recursive algorithms. Also, recursive algorithms are often very elegant and show an economy of
expression.

Since some students struggle with recursion, this lab starts out with some simple applications to
improve your familiarity. The improved version of Fibonacci is a more complicated example that
shows the true power of recursion. Applying yourself to this lab and the one after should get you
comfortable with recursion. This will be especially useful when merge sort and quick sort are
discussed and then again later when trees are presented. For students who want even more practice
with recursion and functional programming, try the language Lisp. It is one of the oldest computer
languages and is still in use. Its original core was strictly recursive, though iterative constructs were
quickly added. Programming in Lisp or Scheme (one of its derivatives) is an interesting way to
practice recursive programming.

Recursion is closely related to iteration. With the appropriate data structures, any iterative algorithm
can easily be turned into a recursive algorithm. Similarly, any recursive algorithm can be made
iterative. Tail recursive algorithms can be easily converted into an iterative algorithm. (Good Lisp
compilers will convert tail recursive code into a loop.) Other recursive algorithms can be converted
into an iterative algorithm by using a stack. (See Lab 13 for an example.) In some cases, finding an
equivalent nonrecursive algorithm that does not use a stack can be quite challenging.

The basic idea of recursion is to solve a problem by first solving one or more smaller problems. Once
this has been done, the solutions of the smaller problems are combined to form the solution to the
original problem. The repetitive nature of recursion comes into play in that to solve the smaller
problems, you first solve even smaller problems. You cannot defer the solution indefinitely.
Eventually, some very small problem must be solved directly.

Lab 6 Recursion—Part I52

RReeccuurrssiivvee DDeessiiggnn
There are five parts to designing a recursive algorithm.

IIddeennttiiffyy tthhee pprroobblleemm: What are the name and arguments of the original problem to be solved?

IIddeennttiiffyy tthhee ssmmaall lleerr pprroobblleemmss: What are the smaller problems that will be used to solve the
original problem?

IIddeennttiiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd: Once the solutions to the smaller problems are in
hand, how are they combined to get the answer to the original problem?

IIddeennttiiffyy tthhee bbaassee ccaasseess: What are the smallest problems that must be solved directly? What are
their solutions?

CCoommppoossee tthhee rreeccuurrss iivvee ddeeff iinniittiioonn: Combine the parts into a complete definition.

A recursive design for computing factorial will be used to illustrate the process. The standard
recursive definition of factorial is well known (see the Resources), so a formulation will be proposed
that will reduce the number of recursive calls made.

IIddeennttiiffyy tthhee pprroobblleemm:
Factorial(n)

IIddeennttiiffyy tthhee ssmmaall lleerr pprroobblleemmss:
(Reduce the problem size by two instead of one.)

Factorial(n – 2)

IIddeennttiiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd:
Factorial(n) = n * (n –1) * Factorial(n – 2)

IIddeennttiiffyy tthhee bbaassee ccaasseess:
Certainly Factorial(1) is 1. But is this enough? Consider Factorial(6). Applying the recursion gives

Factorial(6) = 6*5* Factorial(4)
Factorial(6) = 6*5*4*3* Factorial(2)
Factorial(6) = 6*5*4*3*2*1* Factorial(0)
Factorial(6) = 6*5*4*3*2*1*0*(–1) Factorial(–2)
Factorial(6) = 6*5*4*3*2*1*0*(–1) *(–2) *(–3) Factorial(–4)
…

Lab Manual for Data Structures and Abstractions with Java ™ 53

Clearly, this recursion has two chains of problems, odds and evens.

Both chains must have a base case. An appropriate question is “Where in the even chain should
the recursion stop?” Looking at the last two expansions in the recursion, you see that the resulting
product will be zero, which is not the correct result. No negative n is suitable for the base case.
This just leaves the question of whether the base case should be Factorial(2) or Factorial(0). If
Factorial(0) is the base case, what is its value? The value that makes the recursive definition work
is 1.

Factorial(0) = 1
Factorial(1) = 1

CCoommppoossee tthhee rreeccuurrss iivvee ddeeff iinniittiioonn::

Factorial(n) = 1 if n=0 or n=1
n * (n–1) * Factorial(n–2) if n > 1

From here you can write down the code:

int factorial(int n)
{

int result;
if(n < 2)

result = 1;
else

result = n *(n–1)*factorial(n–2);
return result;

}

An alternate version can be created by recognizing that the base case is simple and can be folded into
the initialization.

int factorial(int n)
{

int result = 1;
if(n >= 2)
result = n *(n–1)*factorial(n–2);
return result;

}

Lab 6 Recursion—Part I54

RReeccuurrssiioonn wwiitthh SSttrruuccttuurreess
Consider the problem of reversing a list (or array) of values.

IIddeennttiiffyy tthhee pprroobblleemm::
Reverse(L)

IIddeennttiiffyy tthhee ssmmaall lleerr pprroobblleemmss::
To reduce the size of the problem, some function of the arguments must decrease. In this case, the
list L must be reduced in size. Consider the following instance of reverse:

Reverse({ 1 2 3 4 5 }) = { 5 4 3 2 1 }

One possibility is to reduce the problem by removing the first element.

Reverse({ 2 3 4 5 }) = { 5 4 3 2 }

This can clearly be used to get the solution to the original problem. The method tail is defined to
return a list with the first element removed. (In Lisp, the tail method was originally named cdr.)

Reverse(tail(L))

IIddeennttiiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::
From the example, it is clear that the first element in L must be pasted onto the end of solution to
the smaller problem. The method head is defined to return the first element in a list. (In Lisp, the
head method was originally named car.)

Reverse(L) = append(Reverse(tail(L)), head(L))

IIddeennttiiffyy tthhee bbaassee ccaasseess::
An empty list is the smallest possible list. It will be represented by nil. Reversing an empty list
results in an empty list.

Reverse(nil) = nil

CCoommppoossee tthhee rreeccuurrss iivvee ddeeff iinniittiioonn::

Reverse(L) = nil if L is nil
append(Reverse(tail(L)), head(L)) if L is not nil

Code is but a short step away.

<T> List<T> reverse(List<T> ls)
{

List<T> result = new ArrayList<T>();
if(ls.size() > 0)
{

result =reverse(ls.subList(1,ls.size()));
result.add(ls.get(0));

}
return result;

}

The recursive definition used the operations append, head, and tail. In the code, the type of the
argument is the built-in List class from Java. The implementation must use appropriate methods
from List to accomplish the three operations. Since only a single character is being appended, the
add() method can be used to place it at the end of the list. Since the first item is in location 0 of the
list, get(0) will extract the head of the list. The subList() method allows one to get a range of items
from the list. By starting at 1, everything except the head will be in the sublist.

Lab Manual for Data Structures and Abstractions with Java ™ 55

There is one more thing to note about this implementation. It is functional in the sense that its
argument remains unchanged. It returns a new list, which is the reverse of the argument. While this
works well for the abstract definition of a list, how about an array? Each of the operations (append,
head, and tail) can be implemented, but they will not be very efficient. Often for an array, it is desired
that the array be changed in place.

The following redesign of the problem has the constraint that the list is stored in an array and it is
desired that the reverse be done in place.

IIddeennttiiffyy tthhee pprroobblleemm::
Reverse(A)

Looking ahead, there is a problem. The arguments must decrease in some fashion, yet the array
will remain a constant size. What is decreasing is not the array, but the portion of the array that
the recursion is working on. An auxiliary method that does the actual recursion is required.

ReverseAux(A, start, end)

IIddeennttiiffyy tthhee ssmmaall lleerr pprroobblleemmss::
The portion of the array that is considered must be reduced in size. Consider the following
instance of reverse:

Initially A is [1 2 3 4 5].
After ReverseAux ([1 2 3 4 5], 0, 4), A is [5 4 3 2 1].

As opposed to Reverse, ReverseAux does not return anything but has a side effect.

Suppose the same reduction in problem size is used as before (reverse the tail of the list).

How can you get from { 1 5 4 3 2 } to { 5 4 3 2 1 }? While it is possible, it requires that every data
value be moved. Trying to use ReverseAux ({ 1 2 3 4 5 }, 0, 3) results in the same kind of
difficulty.

The solution is to reduce the portion of the array being worked on by moving both ends inward.

ReverseAux(A, start+1, end–1)

Lab 6 Recursion—Part I56

To get the desired result, all that remains is to swap the first and last elements.

IIddeennttiiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::

ReverseAux(A, start, end) is

1. ReverseAux(A, start+1, end–1)
2. swap(A[start], A[end]);

IIddeennttiiffyy tthhee bbaassee ccaasseess::
Since the reduction is by two, we have two chains of recursive method calls, one each for arrays
with odd and even numbers of values to be reversed. If start is the same as end there is one value
to be reversed in place. If start is less than end there is more than one value to be reversed. What if
start is greater than end? It is convenient to let this represent the situation where there are no
values to be reversed.

If the portion of array to be reversed is empty or contains a single element, the reverse is the same
as the original and nothing needs to be done.

ReverseAux(A, x, y) where x >= y
is

1. Do nothing.

CCoommppoossee tthhee rreeccuurrss iivvee ddeeff iinniittiioonn::

Reverse(A) = ReverseAux(A, 0, A.length)

ReverseAux(A, start, end) is

1. Do Nothing. if start >= end
or

1. ReverseAux(A, start+1, end–1) if start < end
2. swap(A[start], A[end])

Lab Manual for Data Structures and Abstractions with Java ™ 57

TTaaiill RReeccuurrssiioonn
The composition work that a recursive algorithm does can either be performed before or after the
recursive call. Here is a trace of the calls that ReverseAux does on a list with six elements.

In this case the swap is done after the recursive call and all the work is done on the way back up the
chain.

Lab 6 Recursion—Part I58

In a tail recursion, all the work is done on the way down the chain. Suppose that the definition is
modified to become

Reverse(A) = ReverseAuxTail(A, 0, A.length)

ReverseAuxTail (A, start, end) is

1. Do Nothing. if start >= end
or

1. swap(A[start], A[end]) if start < end
2. ReverseAuxTail (A, start+1, end–1)

Here is a trace of the calls that ReverseAuxTail does on a list with six elements.

The tail recursive method is composing the answer as it goes down the chain of recursive calls. Once
it reaches the base case, all the work has been done and it can return immediately. Also notice that
once the next method in the chain of recursive calls is invoked, the variables start and end are no
longer needed. This means that you can use an iteration that just has one copy of start and end.

Lab Manual for Data Structures and Abstractions with Java ™ 59

In the version that is not tail recursive, start and end cannot be discarded until after the swap.
Therefore, it must have multiple pairs of start and end, one for each recursive call. These will be
stored on the system stack.

Often a tail recursive method will have an argument whose purpose is to store a partial solution as it
is being composed. This can be illustrated by revisiting reverse on a list. Remember that the
composition step was

Reverse(L) = append(Reverse(tail(L)), head(L))

In this case, the tail operation will be performed on the way down the chain of recursive calls, but the
append is done on the way back up. Unlike reverse with an array, it is not simply a matter of moving
statements around. The solution is to add another variable, which will hold the partial solution.

IIddeennttiiffyy tthhee pprroobblleemm::
Reverse(L)

ReverseAuxTail(L, partial)

IIddeennttiiffyy tthhee ssmmaall lleerr pprroobblleemmss::
Again, the size of the list will be reduced by using the tail operation. Consider the following
instance of reverse:

ReverseAuxTail ({ 1 2 3 4 5 }, partial0) = { 5 4 3 2 1 }

It is not clear what partial is yet, but the next call will be

ReverseAuxTail ({ 2 3 4 5 }, partial1) = { 5 4 3 2 1}

Remember that the result of the final recursive call will be the final solution, so all tail recursive
calls will return the solution. Continuing on,

ReverseAuxTail ({ 3 4 5 }, partial2) = { 5 4 3 2 1}
ReverseAuxTail ({ 4 5 }, partial3) = { 5 4 3 2 1}
ReverseAuxTail ({ 5 }, partial4) = { 5 4 3 2 1}
ReverseAuxTail ({ }, partial5) = { 5 4 3 2 1}

Each element must be added to the partial solution. Looking at the second to last call, the value 5
must be prepended to the front of the partial solution. (In Lisp, the prepend method is named
cons.) The smaller problem is therefore:

ReverseAuxTail (tail(L), prepend(head(L), partial))

IIddeennttiiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::
In a tail recursion, all the work in determining how to compose the final solution from the smaller
problem is done in identifying the smaller problem.

ReverseAuxTail (L, partial) =
ReverseAuxTail (tail(L), prepend(head(L), partial))

IIddeennttiiffyy tthhee bbaassee ccaasseess::
An empty list is still the smallest possible list. It will be represented by nil. In this case, though nil
is not returned. At the base case the entire solution must be ready to be returned. In fact, at this
point the partial solution is complete.

ReverseAuxTail (nil, partial) = partial

Lab 6 Recursion—Part I60

CCoommppoossee tthhee rreeccuurrss iivvee ddeeff iinniittiioonn::
There is one remaining piece of business. What should the initial partial solution be? Since each of
the values will be prepended to it one by one, the only possible choice is nil (an empty list).

Reverse(L) = ReverseAuxTail (L, nil)

ReverseAuxTail (L, partial) =

partial if L is nil
ReverseAuxTail (tail(L), prepend(head(L), partial)) if L is not nil

Here is the code.

<T> List<T> reverse(List<T> ls)
{

return reverseAuxTail(ls, new ArrayList<T>());
}

<T> List<T> reverseAuxTail(List<T> ls, List<T> partial)
{

if (ls.size() == 0)
return partial;

else
{

partial.add(0, ls.get(0));
return reverseAuxTail(ls.subList(1,ls.size()), partial);

}
}

The diagram on the next page shows a trace of the method.

Lab Manual for Data Structures and Abstractions with Java ™ 61

Lab 6 Recursion—Part I62

DDoouubbllee RReeccuurrssiioonn
All of the recursive algorithms presented so far have a chain of recursive calls. Each recursive call in
turn makes a single invocation of a smaller recursive problem. A number of recursive algorithms can
make two or more recursive invocations. The classic example of a double recursion is the standard
recursive definition of the sequence of Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

Each is the sum of the previous two numbers in the sequence. The recursive definition is

F(n) = 0 if n = 0
1 if n = 1
F(n–2) + F(n–1) if n > 1

Here is the pattern of recursive calls made for the F(5) tree. (A tree is a mathematical structure
composed of vertices and edges. Each call is a vertex in the tree. Edges represent a method
invocation. The root of the tree is at the top of the diagram and it grows down. The height of the tree
is the length of the longest path from the root. Trees will be discussed in greater depth later when a
corresponding data structure is created.)

The problem with this is that the number of recursive calls made can grow exponentially as the tree
of problems gets taller. Though it takes a bit of analysis to show, the number of invocations is
exponential in n for this recursive definition of Fibonacci numbers.

One way of dealing with the exponential growth is to guarantee that the height of the tree grows
slowly as the problem size increases. Accomplishing this requires that the size of the problem reduce
quickly as you go down a branch in the tree. The merge sort algorithm, which will be presented later,
guarantees this by solving two subproblems each of which is half the size of the original. Halving the
size of the problems limits the height of the tree to log2n.

The other way of dealing with the problem is to look for many instances of the same smaller problem.
In those cases we can try two approaches. Memoization stores the results to problems when they are
encountered for the first time. The next time a problem is seen, the result is just retrieved. The pattern

Lab Manual for Data Structures and Abstractions with Java ™ 63

for a memoized Fibonacci is shown next. An asterisk indicates the first evaluation. An underline
indicates second evaluations. Base cases are just evaluated normally.

The other technique for dealing with this problem is to iteratively evaluate from small problems to
larger problems. Note that for the Fibonacci sequence each number only depends on the previous
two values, so you do not need to keep all the values. This results in the standard iterative algorithm
for computing Fibonacci numbers.

Lab 6 Recursion—Part I64

TTiimmiinngg PPrrooggrraammss
The different algorithms for computing Fibonacci numbers will be timed in this lab. This introduces a
number of complications. To find the time, the following chunk of code will be used.

Calendar start = Calendar.getInstance();

// The Code being timed goes here

Calendar end = Calendar.getInstance();
long diff = end.getTime().getTime() -

start.getTime().getTime();

System.out.println("Time to compute ... was "
+ diff + " milliseconds.");

Each time the getInstance() method is invoked, the current system time will be retrieved. That
time is the number of milliseconds from some fixed date. One consequence of this is that the
difference may be wrong by as much as a millisecond. Any time of that order is not to be trusted.
With the speed of today’s computers, some algorithms may complete well within that time frame. To
address this issue, the code that is being timed may have a for loop that will execute the code
multiple times. The reported time will be divided by the number of times the loop executes. This, of
course, will introduce an extra time for the loop overhead, but it is assumed that this time will be
small and can therefore be ignored.

Our timing difficulties are further complicated by the fact that the code being timed may not have
been running the whole time. The Java Runtime Environment (JRE) is not the only program being
executed. As the load on the computer changes, the amount of time the program gets will change as
well. Running the same timing code with the same parameters will not give you the same result. You
hope that the results are within 10%, but there is no guarantee. Another complicating factor is that the
JRE is threaded. (Multiple tasks can be running each in their own thread within the JRE.) Some
development environments will have threads running that will compete with your program’s thread
for time.

Another issue is that as computers get faster, the time required for the algorithms will decrease. This
presents some problems in the instructions for the labs. An appropriate number of times to execute a
loop today may be insufficient tomorrow. Two strategies have been used to ameliorate these
problems.

The first strategy guarantees that enough iteration is done to get a reasonable execution time (usually
on the order of a minute or so). The code is timed once for a fixed number of iterations. That time is
then used to determine the number of iterations for the subsequent tests.

The second strategy addresses how to plot the times in a graph. Instead of plotting the actual time, a
ratio is plotted instead. The ratio will be the actual time divided by a baseline time (usually the time
for the smallest input). While the times themselves will vary from computer to computer, the ratios
should be fairly stable.

Lab Manual for Data Structures and Abstractions with Java ™ 65

PPrree--LLaabb VViissuuaall iizzaattiioonn

CCoouunntt
To start, consider a very simple recursion that does not do anything but count by ones. Each call of
the recursion will be for a different value of count and has the responsibility of printing that value.
The original call will be for the largest value to be printed.

First consider the problem of counting up. The smallest value that should be printed is 1. When doing
the recursive design, think about whether the display should be done on the way down the recursion
or on the way back up.

IIddeenntt iiffyy tthhee pprroobblleemm::

IIddeenntt iiffyy tthhee ssmmaall lleerr pprroobblleemmss::

IIddeenntt iiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::

IIddeenntt iiffyy tthhee bbaassee ccaasseess::

CCoommppoossee tthhee rreeccuurrss iivvee ddeeffiinniittiioonn::

Lab 6 Recursion—Part I66

Show the operation of your definition on the number 4 in the following diagram. Inside the boxes,
show the values of the arguments passed into the method. On the left-hand side, show the operations
done before the recursive call by the method. On the right-hand side, show operations done after the
recursive call.

Lab Manual for Data Structures and Abstractions with Java ™ 67

Now consider the problem of counting down. This should be very similar to the design of counting
up.

IIddeenntt iiffyy tthhee pprroobblleemm::

IIddeenntt iiffyy tthhee ssmmaall lleerr pprroobblleemmss::

IIddeenntt iiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::

IIddeenntt iiffyy tthhee bbaassee ccaasseess::

CCoommppoossee tthhee rreeccuurrss iivvee ddeeffiinniittiioonn::

Lab 6 Recursion—Part I68

Show the operation of your definition on the number 4 in the following diagram. Inside the boxes,
show the values of the arguments passed into the method. On the left-hand side, show the operations
done before the recursive call by the method. On the right-hand side, show operations done after the
recursive call.

Lab Manual for Data Structures and Abstractions with Java ™ 69

SSttrriinngg RReeppllaaccee
Consider the problem of taking a String object and replacing every 'a' in the string with a 'b'. In
general, the actual characters will be parameters of the replace method. The first problem you runs
into is that a String is immutable. (Once a String object has been created, it cannot be changed.). So
unlike an array, where the replace operation can be done in place, an approach more akin to the
recursive reverse on a list is needed.

Examine the methods of the String class and show how you would implement them.

HHeeaadd::

TTaaiill::

AAppppeenndd//PPrreeppeenndd::

Using those methods and using reverse as a model complete the recursive design for the replace on a
string.

IIddeenntt iiffyy tthhee pprroobblleemm::

IIddeenntt iiffyy tthhee ssmmaall lleerr pprroobblleemmss::

IIddeenntt iiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::

IIddeenntt iiffyy tthhee bbaassee ccaasseess::

CCoommppoossee tthhee rreeccuurrss iivvee ddeeffiinniittiioonn::

Lab 6 Recursion—Part I70

Show the operation of your definition on the string "abcb" with 'b' replaced by 'e' in the following
diagram. Inside the boxes, show the values of the arguments passed into the method. On the left-
hand side, show the operations done before the recursive call by the method. On the right-hand side,
show operations done after the recursive call and indicate what value is returned.

Lab Manual for Data Structures and Abstractions with Java ™ 71

TTaaiill RReeccuurrssiivvee FFaaccttoorriiaall
As is common with tail recursive designs, an extra variable for the partial solution needs to be added.
Factorial will call a helper method that will do the actual recursion. Think about what factorial is
computing in conjunction with the value of n that is available as one goes down the recursion.

IIddeenntt iiffyy tthhee pprroobblleemm::

IIddeenntt iiffyy tthhee ssmmaall lleerr pprroobblleemmss::

IIddeenntt iiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::

IIddeenntt iiffyy tthhee bbaassee ccaasseess::

CCoommppoossee tthhee rreeccuurrss iivvee ddeeffiinniittiioonn::

Lab 6 Recursion—Part I72

Show the operation of your definition on the number 4 in the following diagram. In the boxes, show
the values of the arguments passed into the method. On the left-hand side, show the operations done
before the recursive call by the method. On the right-hand side, show operations done after the
recursive call and indicate what value is returned.

Lab Manual for Data Structures and Abstractions with Java ™ 73

IImmpprroovviinngg FFiibboonnaaccccii
As was mentioned in the Introduction, one way of controlling a double recursion is to limit the height
of the recursion tree. The standard recursive definition for Fibonacci numbers only reduces the
problem size by one and two. This results in a tree that has height n. To control the height, you must
define the recursion in terms of much smaller problem sizes.

Consider the values of F(n) in the following table.

n F(n)
0 0
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34
10 55
11 89
12 144
13 233
14 377

If the value of F(2n) can be related to the value of F(n), the problem size will be reduced in half and
the growth of the tree will be tamed. In the following table, write down the numerical relation
between F(n) and F(2n).

n F(n) F(2n) Relation between F(n) and F(2n)
1 1 1
2 1 3
3 2 8
4 3 21
5 5 55
6 8 144
7 13 377

Lab 6 Recursion—Part I74

Perhaps there is a pattern here. Clearly, though F(2n) does not depend on just F(n). Since Fibonacci is
double recursion, perhaps the values depend on values that neighbor F(n). In the following table,
write down the numerical relation.

n F(n–1) F(n) F(n+1) F(2n) Relation between F(n–1), F(n), F(n+1) and F(2n)
1 0 1 1 1
2 1 1 2 3
3 1 2 3 8
4 2 3 5 21
5 3 5 8 55
6 5 8 13 144
7 8 13 21 377

What simple formula does this relation follow?

While the values in the tables are a good sign of a relationship, by itself it is not concrete evidence. It
is possible that the relation fails for larger values of n. A proof by mathematical induction of the
discovered formula is required and can be done.

The F(n+1) term in the formula can be eliminated to produce:

F(2n) = F2 (n) + 2F(n)F(n–1)

While this definition works for even values, what about odd values? Starting with the formula:

F(2n+2) = F(2n+1) + F(2n)

one can derive
F(2n+1) = 2F2 (n) + 2F(n)F(n-1) + F2 (n–1)

This results in the recursive definition:

F(n)= 0 n=0
1 n=1
F2 (n/2) + 2F(n/2)F(n/2–1) n is even and > 1
2F2 (n/2) + 2F(n/2)F(n/2–1) + F2 (n/2–1) n is odd and > 1

Lab Manual for Data Structures and Abstractions with Java ™ 75

Show the pattern of calls for F(17) and record the values produced by each call.

What is the height of the tree for F(n)?

How many recursive calls are made? Express your answer in big-O notation.

Lab 6 Recursion—Part I76

TTaaiill RReeccuurrssiivvee FFiibboonnaaccccii
Note that the previous recursive formulation has repeated subproblems. Therefore, memoization or
an iterative formulation can improve the performance even more. Notice, however, that not all
possible subproblems need to be computed. To compute from the bottom, the needed subproblems
have to be identified.

Consider the following two partial trees.

Looking at the third line, the first tree depends on three different problems, while the second only
depends on two problems. The second tree is more desirable in that it has fewer problems it repeats.
The first tree needs to be fixed so that only two values are needed at each level of the tree.

The problem arises when the larger of the two values needed is even. What is desired is a definition
of F(2n–1) in terms of F(n) and F(n–1). Looking at the definitions for F(2n) and F(2n+1) and recalling
that any Fibonacci number is the sum of the previous two, it is easy to derive a definition.

F(2n–1) = F2 (n) + F2 (n–1)
F(2n) = F2 (n) + 2F(n)F(n–1)
F(2n+1) = 2F2 (n) + 2F(n)F(n–1) + F2 (n–1)

Using the relation for F(2n–1) for F(11) in the first tree gives:

Lab Manual for Data Structures and Abstractions with Java ™ 77

Now each level in the tree will only have two values. The two values needed on the next level are
determined by larger n value on the level above. If it is even, use the formulas:

F(2n) = F2 (n) + 2F(n)F(n–1)
F(2n–1) = F2 (n) + F2 (n–1)

If it is odd, use the formulas

F(2n+1) = 2F2 (n) + 2F(n)F(n–1) + F2 (n–1)
F(2n) = F2 (n) + 2F(n)F(n–1)

The only remaining problem is to determine which pairs of Fibonacci numbers will be computed for
a given n.

Write down the pairs needed for n=50.

Suppose n is 163. Each of the pairs is recorded in the following table. The values will depend on the
bits in 163. To the right is the bit pattern for 163. Circle the bit that is associated with each pair.
Indicate which pair of formulas was used to get that row from the row below.

F(81) F(80) 1 0 1 0 0 0 1 1
F(40) F(39) 1 0 1 0 0 0 1 1
F(20) F(19) 1 0 1 0 0 0 1 1
F(10) F(9) 1 0 1 0 0 0 1 1
F(5) F(4) 1 0 1 0 0 0 1 1
F(2) F(1) 1 0 1 0 0 0 1 1
F(1) F(0) 1 0 1 0 0 0 1 1

What pair is always at the bottom?

Which bit determines the row for F(2) and F(1)?

If the determining bit is even, which pair of formulas is used?

It is now time to design the tail recursive method for Fibonacci numbers. Again, a tail recursive
helper method will be used. This time, however, two partial solutions are required (one for each of
the pair of values). The bits in n will determine the pattern of values. Two extra methods will be
needed. The first will get the second most significant bit (the bit to the right of the most significant
bit) of a number n. The second will remove the second most significant bit from a number n.

Lab 6 Recursion—Part I78

Consider the number 5. It has the bit pattern 1012. The second bit from the left is 0. Removing the 0
gives 112, which is 3.

What are the bit patterns for 96, 95, 16, 15, and 9?

Give an algorithm to find the second most significant bit in a number n.

Lab Manual for Data Structures and Abstractions with Java ™ 79

Verify that it works on the bit patterns for 96, 95, 16, 15, and 9.

Give an algorithm to return the value found by removing the second most significant bit in a number n.

Verify that it works on the previous bit patterns.

Using the methods secondMSB() and reduceBySecondMSB(), design a tail recursive algorithm for
Fibonacci numbers.

IIddeenntt iiffyy tthhee pprroobblleemm::

IIddeenntt iiffyy tthhee ssmmaall lleerr pprroobblleemmss::

IIddeenntt iiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::

IIddeenntt iiffyy tthhee bbaassee ccaasseess::

CCoommppoossee tthhee rreeccuurrss iivvee ddeeffiinniittiioonn::

Lab 6 Recursion—Part I80

Does your definition work for n=0?

Does your definition work for n=1?

Show the operation of your definition on the number 14 in the following diagram. Inside the boxes,
show the values of the arguments passed into the method. On the left-hand side, show the operations
done before the recursive call by the method. On the right-hand side, show operations done after the
recursive call and indicate what value is returned.

Lab Manual for Data Structures and Abstractions with Java ™ 81

DDiirreecctteedd LLaabb WWoorrkk

CCoouunntt
The first goal of this lab is to implement a couple of simple recursive methods that do not compute or
return anything. Their sole purpose is to print integer values.

SStteepp 11.. Look at the skeleton in Count.java. Compile and run the main method in Count.

Checkpoint: The program will ask you for an integer value. Enter any value. A couple messages will
be displayed, but no counting will happen.

SStteepp 22.. Refer to the count up recursive design from the Pre-Lab Exercises. Complete the
recursive method countUp().

Checkpoint: Run Count. For the integer value enter 5. You should see 1 2 3 4 5.

SStteepp 33.. Refer to the count down recursive design from the Pre-Lab Exercises. Complete the
recursive method countDown().

Final checkpoint: Run Count. For the integer value enter 5. You should see 5 4 3 2 1.

SSttrriinngg RReeppllaaccee
The next goal is to complete a recursive method that will replace all occurrences of a given character
with another character.

SStteepp 11.. Compile and run the main method in TestReplace.

Checkpoint: The program will run and get a null pointer exception.

SStteepp 22.. Refer to the string replace recursive design from the Pre-Lab Exercises and complete the
method replace() in RecursiveStringReplace.java..

Final Checkpoint: Compile and run TestReplace. All tests should pass.

TTaaiill RReeccuurrssiivvee FFaaccttoorriiaall
The next goal is to complete a tail recursive helper method that will compute the factorial function.

SStteepp 11.. Compile and run the main method in TestFactorial.

Checkpoint: The program will run and fail most tests.

SStteepp 22.. Refer to the recursive design from the Pre-Lab Exercises and complete the methods
tailRecursive() and helper() in RecursiveFactorial.java.

Final Checkpoint: Compile and run TestFactorial. All tests should pass.

TTiimmiinngg BBaassiicc FFiibboonnaaccccii
The next goal is to see how long it takes to compute Fibonacci numbers using the basic recursive
formulation.

SStteepp 11.. Compile TimeFibonacci.

Lab 6 Recursion—Part I82

SStteepp 22.. Run the code for even values of n and record the first value of n for which the time is
greater than 100 milliseconds. (24 is a good place to start your search. Avoid large values.)

FIRST EVEN VALUE OF N
FOR WHICH THE TIME OF
BASIC FIBONACCI IS GREATER
THAN 100 MILLISECONDS

X =

SStteepp 33.. Fill in the values for n in the following table. Run the program and fill in the times. Stop
timing when the time is longer than 100,000 milliseconds (about 2 minutes).

N TIME IN MILLISECONDS TO COMPUTE F(N)
USING THE BASIC FIBONACCI RECURSION

X =
X+ 2 =
X+ 4 =
X+ 6 =
X+ 8 =
X+ 10 =
X+ 12 =
X+ 14 =
X+ 16 =
X+ 18 =
X+ 20 =
X+ 22 =
X+ 24 =
X+ 26 =
X+ 28 =
X+ 30 =

SStteepp 44.. Plot points from the preceding table on the following graph. Don’t worry about plotting
the points that are off the graph.

SStteepp 55.. Draw a smooth curve that approximates the points.

Lab Manual for Data Structures and Abstractions with Java ™ 83

AA BBeetttteerr VVeerrssiioonn ooff FFiibboonnaaccccii
The next goal is to implement the better versions of factorial that were discovered in the Pre-Lab
Exercises. They will be timed.

SStteepp 66.. Refer to the Pre-Lab Exercise and complete the implementation of the method better()
in RecursiveFibonacci.

SStteepp 77.. Compile TestFibonacci.

Checkpoint: Run TestFibonacci. All tests for the better Fibonacci formulation should pass.

AA TTaaiill RReeccuurrssiivvee VVeerrssiioonn ooff FFiibboonnaaccccii

SStteepp 88.. Refer to the recursive formulation from Improving Fibonacci in the Pre-Lab and complete
the implementation of the method secondMSB() in RecursiveFibonacci. Don’t forget to change the
return statement.

SStteepp 99.. Refer to the recursive formulation from Improving Fibonacci in the Pre-Lab Exercises and
complete the implementation of the method reduceBy2ndMSB() in RecursiveFibonacci.

SStteepp 1100.. Test the two methods you just created.

SStteepp 1111.. Refer to the recursive formulation from Improving Fibonacci in the Pre-Lab Exercises and
create a tail recursive helper method in RecursiveFibonacci that uses secondMSB() and
reduceBy2ndMSB().

SStteepp 1122.. Complete the method tailRecursive() in RecursiveFibonacci that calls the tail
recursive helper method you created.

SStteepp 1133.. Compile TestFibonacci.

Checkpoint: Run TestFibonacci. All tests for the both Fibonacci formulations should pass.

MMoorree TTiimmiinngg ooff FFiibboonnaaccccii
SStteepp 1144.. Comment out the call to timeBasic() in TimeFibonacci.

SStteepp 1155.. Uncomment the code to time the better and tail recursive versions of Fibonacci in
TimeFibonacci.

SStteepp 1166.. Run TimeFibonacci. Enter 100 for n and 10000 for the number of trials. Fill in the value
in the table.

TIME IN MILLISECONDS TO COMPUTE F(100)
USING THE BETTER RECURSIVE FORMULA

T =

SStteepp 1177.. Complete the following computation.

TRIALS = 10000 / T =

Lab 6 Recursion—Part I84

SStteepp 1188.. Fill in the following table. Use TRIALS for the number of trials.

TIME IN
MILLISECONDS

FOR BETTER
FIBONACCI

TIME IN
MILLISECONDS

FOR TAIL
RECURSIVE
FIBONACCI

n=10
n=20
n=30
n=40
n=50
n=60
n=70
n=80
n=90
n=100

SStteepp 1199.. Plot points (in different colors) for the times for two different versions of Fibonacci in the
table. Put appropriate value labels on the y-axis of the graph.

Note that even though the better formulation allows computations for larger values of N in terms of
time, the size of the values is still problematic. The methods all use the long data type and will
quickly overflow.

Lab Manual for Data Structures and Abstractions with Java ™ 85

PPoosstt--LLaabb FFooll llooww--UUppss

1. Develop a recursive algorithm for computing the product of a sequence of odd values. Use
that method to develop a recursive algorithm for factorial that splits the problem into a
product of even values and a product of odd values.

2. Develop a recursive algorithm that given a and n, computes the sum:

S = 1 + a + a2 + ... + an

3. Develop a recursive algorithm similar to string replace which works in place on an array of
characters.

4. Develop a recursive algorithm for computing the second most significant bit of a number n.

5. Develop a recursive algorithm for computing the result of removing the second most
significant bit from a number n.

6. Look at the ratio of the times for computing Fibonacci numbers F(n) and F(n+2) using the
basic recursive formula. Given that you know how long it would take to compute F(X),
predict the amount of time it would take to compute F(X+50). Predict the amount of time it
would take to compute F(X+100).

7. Write a loop to compute successive values of F(n) using the tail recursive version. For what
value of n does the computation overflow?

87

LLaabb 77 RReeccuurrss iioonn——PPaarrtt II II

GGooaall
The exploration of recursion is continued in this lab with a focus on double recursion. Two
applications will be developed. The first is the Reve’s problem, which is similar to the towers of
Hanoi puzzle, and the second computes the maximum of an array.

RReessoouurrcceess
• Chapter 10: Recursion

• Hanoi.jar—Sample application: Towers of Hanoi on four poles

• Reves.jar—Sample application: The Reve’s puzzle

• Disk.html— Interface documentation for Disk.java
• Pole.html—Interface documentation for Pole.java
• Appendix A—The Animated Application Framework

JJaavvaa FFii lleess
• BadArgumentsForMaxException.java
• RecursiveMaxOfArray.java
• TestMax.java

Files in Directory RevesApplication:
• Disk.java
• Pole.java
• RevesActionThread.java
• RevesApplication.java
• Other framework classes discussed in Appendix A

IInnttrroodduucctt iioonn
One of the classic examples of a doubly recursive algorithm is the solution to the towers of Hanoi.
There are three poles and n disks of different sizes. The disks are stacked on one of the poles and are
to be moved another pole. There are two basic rules. First, only one disk can be moved at a time.
Second, no disk can be moved on top of a smaller disk.

IIddeennttiiffyy tthhee pprroobblleemm::
Hanoi(n, from, to, extra)

IIddeennttiiffyy tthhee ssmmaall lleerr pprroobblleemmss::
With four disks to be moved from pole A to pole C, the puzzle starts with the following picture.

Lab 7 Recursion—Part II88

If the disks from 1 through 3 could be moved off of pole A, the largest disk would be free to move.
The stack of three disks must all be moved onto pole B, or C will not be available for disk 4. Once
this has been done, disks 1 through 3 must then be moved onto pole C.

There are two smaller problems to be solved.

Hanoi(n–1, from, extra, to)
and

Hanoi(n–1, extra, to, from)

IIddeennttiiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::
Hanoi(n, from, to, extra) is

1. Hanoi(n–1, from, extra, to)
2. Move disk n off pole from onto pole to.
3. Hanoi(n–1, extra, to, from)

IIddeennttiiffyy tthhee bbaassee ccaasseess::
There are two possibilities for the base case. Either n is 0 or n is 1. Certainly, if n is zero, nothing
needs to be done. If n is 1, one disk needs to be moved. Either one will give a satisfactory base
case.

Hanoi(0, from, to, extra) is
1. Do nothing.

CCoommppoossee tthhee rreeccuurrss iivvee ddeeff iinniittiioonn::

Hanoi(n, from, to, extra) is
If n =0

1. Do nothing.
If n > 0

1. Hanoi(n–1, from, extra, to)
2. Move disk n off pole from onto pole to
3. Hanoi(n–1, extra, to, from)

Lab Manual for Data Structures and Abstractions with Java ™ 89

The tree for three disks is shown here.

The move made by each recursive call is indicated by underlining the poles involved in the move.

The second application is known as the Reve’s puzzle. It is a game that is similar to the towers of
Hanoi puzzle. The only difference is that there are four poles instead of three. For the towers of
Hanoi, it is known that the recursive algorithm will move the disks optimally (in the least number of
moves). Of the algorithms that solve the Reve’s puzzle, it is not known which, if any, is optimal.
There is a conjecture that the Frame-Stewart algorithm, which will be used in the lab, gives the
optimum.

PPrree--LLaabb VViissuuaall iizzaattiioonn

TThhee RReevvee’’ss PPuuzzzzllee
The Frame-Stewart algorithm for the Reve’s puzzle will use the solution to the towers of Hanoi.

Suppose you need to move n disks from pole 1 to pole 4, with poles 2 and 3 as extras. If there is a
single disk, Frame-Stewart will just move the disk, from pole 1 to pole 4. If there is more than one
disk the algorithm has 3 steps. First, recursively move the top n–k disks from pole 1 to pole 2. Second,
move the remaining k disks from pole 1 to 4, using the towers of Hanoi algorithm on just poles 1, 3,
and 4. Last, recursively move the n–k disks from pole 2 to 4.

This is similar in structure to the towers of Hanoi, except that in the middle step more than one disk
is moved.

Lab 7 Recursion—Part II90

The value of k is chosen to be the smallest integer value where n does not exceed k(k+1)/2 (the kth
triangular number).

Fill in the following table with the values of the triangular numbers.

K K(K+1)/2
1
2
3
4
5
6
7

For each n, find the k value such that n does not exceed the kth triangular number from the preceding
table.

N
SMALLEST K WHERE

N IS NOT GREATER THAN
K(K+1)/2

1
2
3
4
5
6
7
8
9
10
11

Give an algorithm to compute k given n.

Lab Manual for Data Structures and Abstractions with Java ™ 91

Using the operation to compute k, complete the recursive design for the Reve’s puzzle.

IIddeenntt iiffyy tthhee pprroobblleemm::

IIddeenntt iiffyy tthhee ssmmaall lleerr pprroobblleemmss::

IIddeenntt iiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::

IIddeenntt iiffyy tthhee bbaassee ccaasseess::

CCoommppoossee tthhee rreeccuurrss iivvee ddeeffiinniittiioonn::

Lab 7 Recursion—Part II92

Trace the operation of your algorithm for n=4. The solution should have nine moves.

MMaaxxiimmuumm
This application will compute the maximum value in an array. It will split the array into halves and
thus avoid an exponential performance cost. The pattern of this recursion is similar to what will be
seen later for the advanced sorting algorithms.

As with the other recursive algorithms that work on an array, a range of values in the array will be
examined. This range will be split in half.

To start consider how the split will be made. Suppose the recursive algorithm is asked to look at the
portion of an array that ranges from 3 to 9.

INDEX … 3 4 5 6 7 8 9 …
VALUE 20 40 10 90 50 70 80

How many values are there in the range?

Lab Manual for Data Structures and Abstractions with Java ™ 93

What is the index of the middle value in the range?

If the limits of the range are first and last, give a formula to compute the index of the middle value.

The task now is to split up the array, but where should the middle value go? It can either go in the
first half, the second half, or neither half. To answer this question, consider a portion of the array with
just two elements. This is the smallest range that can be split up and is a useful test case. If this case
does not work, the recursive algorithm is doomed to failure.

Using the preceding formula, what will be the index of the middle value?

In the following arrays, box the left and right halves for the given condition.

MMiiddddllee iinn ff iirrsstt hhaallff::
INDEX … 3 4 …
VALUE 20 40

MMiiddddllee iinn sseeccoonndd hhaallff::
INDEX … 3 4 …
VALUE 20 40

MMiiddddllee iinn nneeiitthheerr hhaallff::
INDEX … 3 4 …
VALUE 20 40

What is the maximum of an empty range? This is problematic. The maximum is not defined in that
situation. Only one of the three cases will have a nonempty for both of the halves.

If the limits of the range are first and last and middle is the middle index, what are the ranges for the
first and second halves?

First half range:

Second half range:
Having thought about how to split the range in half, continue on with the recursive design.

IIddeenntt iiffyy tthhee pprroobblleemm::

Lab 7 Recursion—Part II94

IIddeenntt iiffyy tthhee ssmmaall lleerr pprroobblleemmss::

IIddeenntt iiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::

IIddeenntt iiffyy tthhee bbaassee ccaasseess::

CCoommppoossee tthhee rreeccuurrss iivvee ddeeffiinniittiioonn::

Show the operation of your definition on the array [9 3 4 5 7] with the range of 0 to 4 on the
following diagram. Inside the boxes, show the values of the arguments passed into the method. On
the left-hand side, show the operations done before the recursive call by the method. On the right-
hand side, show operations done after the recursive call. There are two more recursive calls that will
be made but are not shown in the picture. Their location will depend on how the split was
formulated. Add them in.

Lab Manual for Data Structures and Abstractions with Java ™ 95

DDiirreecctteedd LLaabb WWoorrkk

RReevvee’’ss PPuuzzzzllee
The first part of the lab is to complete an animated application that solves the Reve’s puzzle.
Approximately half of the classes in the application implement the framework that animates the
application. A description of the classes in the framework is given in Appendix A. For the most part,
these classes can be ignored as the animated application is developed as long as appropriate care is
taken. The appendix also gives instructions for using the framework to create new animated
applications.

SStteepp 11.. Compile all the classes in the folder RevesApplication. Run the main method in
AnimatedReves.

Checkpoint: The program will run and a graphical user interface will appear. Across the top will be
controls for stepping the application. At this point there are only two steps that can be done. Step
from the setup phase to the initial state. Then step to the final state. At this point reset must be
pressed. Do so. Pressing the go button will automatically step the application to the final state. The
speed of the steps is controlled by the speed text field and can be changed at any time. The smaller
the number is the quicker the steps will be. The default speed of 100 corresponds to 1 second. Pause
can be pressed at any time and the application can be single stepped again.

In the setup phase, the number of disks can be changed. Enter a value into the text field and press
enter. Once step is pressed and the application is in the initial state, the number of disks cannot be
changed during the current execution of the application. (You can always press reset to abort the
current execution and go back to the setup phase.)

The first goal is to create the disks and poles that the application will use.

SStteepp 22.. If you have not already, look at the interface documentation in Pole.html and
Disk.html.

SStteepp 33.. In the init() method of RevesActionThread, add code to create four poles and assign
them to the variables a, b, c, and d.

SStteepp 44.. Add code that creates the disks and puts them on pole a.

Checkpoint: Compile the classes and run AnimatedReves. There should be four poles and 10 disks on
the first pole. Type 4 in the text field for the number of disks and press enter. The number of disks
displayed should change.

The next goal is to complete the code that will move a disk from one pole to another.

SStteepp 55.. Examine the method moveDisk() in RevesActionThread. It already has code that
displays the move in the window and waits for a step. Don’t change this code.

SStteepp 66.. Add code that will remove the top disk from one pole and then add it to the other pole.

SStteepp 77.. In the executeApplication() method of RevesActionThread, add the line of code

moveDisk(a,b);

Checkpoint: Compile the classes and run AnimatedReves. Step three times. The top disk on pole a
should move to pole b.

The next goal is to create the code that will solve the towers of Hanoi.

SStteepp 88.. Refer to the recursive design from the Pre-Lab Exercises and create the method
towersOfHanoi() in RevesActionThread. Make sure you call the moveDisk() method that was just
completed.

SStteepp 99.. Change the single line of code in the executeApplication() method of
RevesActionThread to call towersOfHanoi(). The source pole will be a, the destination will be d,
and the extra will be b. Use the variable disks for the number of disks to move.

Lab 7 Recursion—Part II96

Checkpoint: Compile the classes and run AnimatedReves. The application should move the disks as
expected. You may run Hanoi.jar to see what it should look like.

The final goal is to complete the Frame-Stewart algorithm.

SStteepp 1100.. Refer to the algorithm for finding the value of k and create a method to compute it in
RevesActionThread.

SStteepp 1111.. Refer to the recursive design from the Pre-Lab Exercises and create the method reves()
in RevesActionThread. Make sure to call the method that was just completed in the previous step.

SStteepp 1122.. Change the single line of code in the executeApplication() method of
RevesActionThread to call reves(). The source pole will be a, the destination will be d, and the
extras will be b and c. Use the variable disks for the number of disks to move.

Final checkpoint: Compile the classes and run AnimatedReves.

Try the application with three disks. It should use five moves.

Try the application with four disks. It should use nine moves.

The application should move the disks as expected. You may run to Reves.jar to see what it should
look like.

MMaaxxiimmuumm
The second part of the lab is to complete the maximum application.

SStteepp 11.. Look at the skeleton in RecursiveMaxOfArray.java. Compile and run the main method
in TestMax.

Checkpoint: The program should run and fail all tests.

SStteepp 22.. Refer to the recursive design from the Pre-Lab Exercises. Complete the recursive method
max(). Don’t forget to throw an exception if there is not at least one value in the range.

Final checkpoint: Run TestMax. All tests should pass.

Lab Manual for Data Structures and Abstractions with Java ™ 97

PPoosstt--LLaabb FFooll llooww--UUppss

1. Determine the number of moves that the towers of Hanoi and the Reve’s puzzles take for 1 to
15 disks. Plot the number of moves versus the number of disks.

2. Develop and implement a recursive algorithm to solve the Reve’s puzzle that recursively
moves half the disks to one of the extra posts, then moves all but the bottom disk to the other
extra post (using only three posts). Move the bottom disk to the destination. Move the other
two stacks of disks appropriately. Compare the number of moves needed compared to the
Frame-Stewart algorithm.

3. Develop a recursive algorithm to move n disks from a source pole to a destination pole using
three extra poles (five poles total).

4. For those who are familiar with drawing in Java. Make a copy of your solution to the Reve’s
puzzle and modify it to use five poles. Implement your algorithm from the previous
question.

5. Develop code to time the performance of the recursive maximum. Plot the performance and
identify the time complexity of the solution.

6. Develop and implement a doubly recursive algorithm for computing the product of all the
values in an array.

7. Develop and implement a doubly recursive algorithm that moves the minimum value to the
beginning of an array.

99

LLaabb 88 BBaassiicc SSoorrttss

GGooaall
In this lab the performance of basic sorting algorithms will be explored.

RReessoouurrcceess
• Chapter 11: An Introduction to Sorting

JJaavvaa FFii lleess
• SortArray.java
• SortDriver.java

IInnttrroodduucctt iioonn
Sorting is an important basic operation used by many applications. A lot of effort has been spent
creating fast sorting algorithms. In this lab, the performance of three basic sorting algorithms will be
measured. Since better algorithms are known, these algorithms are of limited use. (The performance
of two faster algorithms, merge sort and quick sort, will be examined in the next lab.)

One of the difficulties in measuring the performance of the Fibonacci computation was that different
computers execute at different speeds. One method for dealing with this problem is to find a core
operation that the algorithm performs. The performance of the algorithm will be determined in terms
of the number of times that operation is performed. This will give a way of comparing two
algorithms that is independent of the computer the algorithm runs on.

For general purpose sorting algorithms, the standard measure is the number of comparisons that are
made.

TThhee SSttaatt iisstt iiccss
To get a fair view of the performance of a sort, it is not enough to just try it on one array. Instead, it
should be tested on a number of randomly generated arrays A1, A2, A3, … Ak. For each array, the
number of comparisons made will be counted giving C1, C2, C3, … Ck. From these data values, the
average, minimum, and maximum number of comparisons will be computed.

The computed average number of comparisons will give an approximation to the true average
number of comparisons used by the algorithm. Assuming that the generation of the arrays is truly
random, larger values for k will lead to a closer approximation to the true average.

The minimum and maximum give an indication of how consistent the performance is. They also give
a rough indication of what the best and worst cases, respectively, are. Be aware, though, that the
number of possible orderings of an array is n factorial. If relatively few of the cases lead to best- or
worst-case behavior, they are unlikely to show up in the randomly chosen test cases.

In practice, the worst and average cases are of interest. The worst case allows you to guarantee the
performance of an algorithm. On the other hand, if the algorithm is going to be used many times, the
possibility of the worst case may be tolerated to achieve better overall performance.

100 Lab 8 Basic Sorts

PPrree--LLaabb VViissuuaall iizzaattiioonn

CCoommppuutt iinngg SSttaatt iisstt iiccss
Consider an object, which is given the values C1, C2, C3, … Ck one at a time. In other words, it has a
method giveValue(c). It is not allowed to keep the values in an array, but it can have a limited
number of private variables. After each call to the method giveValue(), the object is required to
know the current minimum, maximum, and average.

What private variables should it use?

Create an algorithm for giveValue(c).

Test it on the sequence:

giveValue(-10)

Test it on the sequence:

giveValue(7)

Test it on the sequence:

giveValue(3)
giveValue(2)
giveValue(–5)
giveValue(10)
giveValue(33)
giveValue(1)

Lab Manual for Data Structures and Abstractions with Java ™ 101

PPrreeddiicctt iinngg tthhee AAvveerraaggee PPeerrffoorrmmaannccee ooff SSeelleecctt iioonn SSoorrtt
In selection sort, the array is divided in two parts. The first part has sorted values. The second part
has values that are in arbitrary order. All the values in the first part are less than the values in the
second part. At each phase of the algorithm, the smallest value in the second part is found (selected)
and swapped to the end of the first part.

The following picture shows the state of selection sort at an intermediate step.

Suppose someone told you the position of the smallest value in the second portion of the array. How
many values must be checked to verify that 4 is the smallest value? (Does 4 need to be checked
against itself?)

While this is not the way selection sort finds the 4, it does give a minimum for the number of
comparisons required. In fact, selection sort will use that number of comparisons.

TThhee ggeenneerraall ccaassee ooff nn vvaalluueess::
How many comparisons are needed in the first pass if there are n values?

How many comparisons are needed in the second pass if there are n values?

How many comparisons are needed in the third pass if there are n values?

What is the sequence of comparisons needed?

What is the sum of the sequence?

102 Lab 8 Basic Sorts

For n=20, how many comparisons are required?

Remember this value for the lab.

PPrreeddiicctt iinngg tthhee AAvveerraaggee PPeerrffoorrmmaannccee ooff IInnsseerrtt iioonn SSoorrtt
In insertion sort, the array is again divided into two parts. The first part has sorted values. The second
part has values that are in arbitrary order. Unlike selection sort, the values in the first part may be
larger than values in the second part. At each phase of the algorithm, the next value in the unsorted
part is inserted into the correct place in the sorted part.

The following picture shows the state of insertion sort at an intermediate step.

What is the largest number of values that the 5 must be checked against?

What is the smallest number of values that the 5 must be checked against?

If all values from the largest to smallest are equally possible, what is the average number of
comparisons?

TThhee ggeenneerraall ccaassee ooff nn vvaalluueess::
It is easier to think about the phases of insertion sort in reverse order.

What is the average number of comparisons needed in the last pass if there are n values?

Lab Manual for Data Structures and Abstractions with Java ™ 103

What is the average number of comparisons needed in the second to last pass if there are n values?

What is the average number of comparisons needed in the third to last pass if there are n values?

What is the average number of comparisons needed in the third pass if there are n values? (3 items
already in the sorted part.)

What is the average number of comparisons needed in the second pass if there are n values?
(2 items already in the sorted part.)

What is the average number of comparisons needed in the first pass if there are n values?
(1 item already in the sorted part.)

What is the sequence of comparisons needed?

What is the sum of the sequence?

For n=20, how many comparisons are required on average?

Remember this value for the lab.

104 Lab 8 Basic Sorts

Directed Lab Work
The basic sorts have been implemented in the SortArray class. You will make a new class
SortArrayInstrumented that will be based on that class. It will allow you to gather statistics about
the sorts. The SortDriver class will generate the arrays, call the sorts, and then display the statistical
results.

AAddddiinngg SSttaatt iisstt iiccss ttoo SSeelleecctt iioonn SSoorrtt
SStteepp 11.. If you have not done so, look at the implementation of the sorts in SortArray.java.
Look at the skeleton in SortDriver.java. Compile the classes SortArray, and SortDriver. Run the
main method in SortDriver.

Checkpoint: The program will ask you for an array size. Enter 20. An array of 20 random values
between 0 and 20 should be generated and displayed. Selection sort will be applied to array and the
sorted array will be displayed. Verify that this works correctly.

The first goal is to create a new class SortArrayInstrumented that will be used to collect statistics
about the performance of the sorts. Private variables of the class will be used to record the number of
comparisons made.

SStteepp 22.. Create a new class name SortArrayInstrumented.

SStteepp 33.. Copy the contents of SortArray into SortArrayInstrumented. Change the name in the
class declaration from SortArray to SortArrayInstrumented.

SStteepp 44.. Create a default constructor that does nothing. (It will have work to do later.)

SStteepp 55.. Remove static from all the methods in the SortArrayInstrumented class.

Checkpoint: You should be able to compile SortArrayInstrumented without errors.

Since the sort methods are no longer static, SortDriver must be changed to create an instance of
SortArrayInstrumented and then invoke the sort method using the instance.

SStteepp 66.. In main of sortDriver declare and create a new instance of SortArrayInstrumented
named sai.

SStteepp 77.. Change SortArray.selectionSort(data, arraySize) to sai.selectionSort(data,
arraySize).

Checkpoint: Compile and run the program. Enter 20 for the array size. Verify that this works
correctly.

The next goal is to add code to the selection sort to count the number of times that a comparison of
data values is made. Methods will be added to the SortArrayInstrumented class to allow the
number of comparisons to be recovered.

SStteepp 88.. Add a private variable comparisons of type long to the SortArrayInstrumented class.
Initialize it to zero in the constructor.

SStteepp 99.. Add a public accessor method getComparisons to the SortArrayInstrumented class.

Lab Manual for Data Structures and Abstractions with Java ™ 105

SStteepp 1100.. In order to count the number of times that compareTo() is called by selection sort, put
the line

comparisons++;
just before the if statement in indexOfSmallest(). If the code is inserted inside the then clause,
only the comparisons that result in true will be counted.

SStteepp 1111.. Add a public accessor method getComparisons to the SortArrayInstrumented class.

SStteepp 1122.. In SortDriver, add the line
System.out.println(" comparison made: "+sai.getComparisons());

after the call to selection sort.

Checkpoint: Compile and run the program. Enter 20 for the array size. Verify that the sort still works
correctly. The number of comparisons should be 190.

The next goal is to compute the average number of comparisons made by the sort with many
different lists (all of the same size). Only SortDriver will be changed.

SStteepp 1133.. In SortDriver, use the method getInt() to set the variable trials.

SStteepp 1144.. Starting with the call to generateRandomArray, wrap the remainder of the code in main

in SortDriver with a for loop that runs the given number of trials.

Checkpoint: Compile and run the program. Enter 20 for the array size. Enter 3 for the number of
trials. Verify that each of the three sorts works correctly and is for a different list of 20 values. The
number of comparisons should be 190, 380, and 570.

Notice that the number of comparisons gives a running total for all calls. The next goal is to compute
and report the minimum and maximum number of comparisons made over all the calls to the sort. To
do this, the use of the comparisons variable will be changed slightly. It will only be the number of
comparisons made by the last call to the sort. The total number of comparisons made by all calls will
be held in a new variable. This aids in the computation of the maximum and minimum.

SStteepp 1155.. Add a private variable totalComparisons of type long to the SortArrayInstrumented
class. Initialize it to zero in the constructor.

SStteepp 1166.. Add a private variable minComparisons of type long to the SortArrayInstrumented
class. Initialize it to Long.MAX_VALUE in the constructor.

SStteepp 1177.. Add a private variable maxComparisons of type long to the SortArrayInstrumented
class. Initialize it to zero in the constructor.

SStteepp 1188.. Add three public accessor methods (one for each of the new variables) to the
SortArrayInstrumented class.

To compute the minimum and maximum number of comparisons, code needs to be added at the
beginning and end of the sort. While the needed code could be added directly to the sorts, it is better
to encapsulate it in a couple new methods.

SStteepp 1199.. Add a private method startStatistics() to the SortArrayInstrumented class. It
should initialize comparisons to zero.

SStteepp 2200.. Add a private method endStatistics() to the SortArrayInstrumented class. It should
add comparisons to totalComparisons. It should compare comparisons to minComparisons and
set minComparisons to whichever is smaller. It should also set maxComparisons in an analogous
fashion.

SStteepp 2211.. Call startStatistics() at the beginning of the selectionSort method. Call
endStatistics() at the end of the selectionSort method.

106 Lab 8 Basic Sorts

SStteepp 2222.. After the for loop in main of SortDriver, add in three statements that print the total,
minimum, and maximum number of comparisons.

Checkpoint: Compile and run the program. Enter 20 for the array size. Enter 3 for the number of
trials. Verify that each of the three sorts works correctly and is for a different list of 20 values. The
number of comparisons should be 190 for each of the three calls. The total should be 570 and the
minimum and maximum should both be 190. Refer to the Pre-Lab Exercises and compare.

Enter 10 for the array size. Enter 3 for the number of trials. Verify that each of the three sorts works
correctly and is for a different list of 10 values. The number of comparisons should be 45 for each of
the three calls. The total should be 135 and the minimum and maximum should both be 45.

SStteepp 2233.. Compute the average number of comparisons made over the trials and print it. (The
average is the total number of comparisons divided by the number of trials.)

SStteepp 2244.. In preparation for filling in the table, comment out the print statements inside the for
loop in main.

Final checkpoint: Compile and run the program. Enter 20 for the array size. Enter 1000 for the
number of trials. The total should be 19000 and the average, minimum, and maximum should all be
190.

SStteepp 2255.. Fill in this table and the appropriate column in the table at the end of the directed lab.
Use 100 trials.

CCoommppaarr iissoonnss ffoorr SSeelleeccttiioonn SSoorrtt

MINIMUM
COMPARISONS

AVERAGE
COMPARISONS

MAXIMUM
COMPARISONS

Size=10
Size=50

Size=100
Size=200
Size=300
Size=400
Size=500
Size=750
Size=1000

AAddddiinngg SSttaatt iisstt iiccss ttoo IInnsseerrtt iioonn SSoorrtt
Most of the work needed has been done before. It is now just a matter of adding the appropriate code
to the insertion sort code.

SStteepp 2266.. Add calls to startStatistics() and endStatistics() to the public, nonrecursive
insertionSort() method.

SStteepp 2277.. In the insertionSort() method place code to add one to comparisons when
compareTo() is invoked.

SStteepp 2288.. In main in SortDriver, change the call from selectionSort to insertionSort.

SStteepp 2299.. Uncomment the print statements in the for loop in main in SortDriver.

Checkpoint: Compile and run the program. Enter 20 for the array size. Enter 3 for the number of
trials. Verify that each of the three sorts works correctly and is for a different list of 20 values. The
number of comparisons should be approximately 105 for each of the three calls. Verify that the total,

Lab Manual for Data Structures and Abstractions with Java ™ 107

minimum, and maximum are correct for the reported number of comparisons. Refer to the Pre-Lab
Exercises and compare.

Enter 10 for the array size. Enter 3 for the number of trials. Verify that each of the three sorts works
correctly and is for a different list of 10 values. The number of comparisons should be approximately
27 for each of the three calls. Verify that the total, minimum, and maximum are correct for the
reported number of comparisons

SStteepp 3300.. Recomment the print statements from the previous step.

Final checkpoint: Compile and run the program. Enter 20 for the array size. Enter 10000 for the
number of trials. The average you get should be within the range of 101 to 108 approximately 99% of
the time. If you get a value outside the range, retry the test a few times. If your result is consistently
outside the range, check the code you added.

SStteepp 3311.. Fill in this table and the appropriate column in the table at the end of the directed lab.
Use 100 trials.

CCoommppaarr iissoonnss ffoorr IInnsseerrttiioonn SSoorrtt

MINIMUM
COMPARISONS

AVERAGE
COMPARISONS

MAXIMUM
COMPARISONS

Size=10
Size=50

Size=100
Size=200
Size=300
Size=400
Size=500
Size=750
Size=1000

AAddddiinngg SSttaatt iisstt iiccss ttoo SShheellll SSoorrtt
SStteepp 11.. Add calls to startStatistics() and endStatistics() to the public shellSort()
method.

SStteepp 22.. In the incrementalInsertionSort() method place code to add one to comparisons
when compareTo() is invoked. Since the comparison is in the end condition of a for loop, this is a bit
trickier to account for than with the other two sorts. The compareTo method may have been called
one more time than the number of times the body of the loop was executed.

SStteepp 33.. In main in SortDriver, change the call from insertionSort to shellSort.

SStteepp 44.. Uncomment the print statements in the for loop in main in SortDriver.

Checkpoint: Compile and run the program. Enter 20 for the array size. Enter 3 for the number of
trials. Verify that each of the three sorts works correctly and is for a different list of 20 values. The
number of comparisons should be approximately 40 for each of the three calls. Verify that the total,
minimum, and maximum are correct for the reported number of comparisons.

Enter 10 for the array size. Enter 3 for the number of trials. Verify that each of the three sorts works
correctly and is for a different list of 10 values. The number of comparisons should be approximately
13 for each of the three calls. Verify that the total, minimum, and maximum are correct for the
reported number of comparisons

SStteepp 55.. Recomment the print statements from the previous step.

Final checkpoint: Compile and run the program. Enter 20 for the array size. Enter 10000 for the
number of trials. The average should be within the range of 38 to 42 approximately 99% of the time.

108 Lab 8 Basic Sorts

SStteepp 66.. Fill in this table and the appropriate column in the table at the end of the directed lab.
Use 100 trials.

CCoommppaarr iissoonnss ffoorr SShheell ll SSoorrtt

MINIMUM
COMPARISONS

AVERAGE
COMPARISONS

MAXIMUM
COMPARISONS

Size=10
Size=50

Size=100
Size=200
Size=300
Size=400
Size=500
Size=750
Size=1000

AAvveerraaggee CCoommppaarriissoonnss ffoorr AAllll TThhrreeee SSoorrttss

SELECTION
SORT

INSERTION
SORT

SHELL
SORT

Size=10
Size=50

Size=100
Size=200
Size=300
Size=400
Size=500
Size=750
Size=1000

PPoosstt--LLaabb FFooll llooww--UUppss

1. Add a reset() method to SortArrayInstrumented that will set each of the variables as the
constructor does. Modify SortDriver to compute the average, minimum, and maximum for
each of the three sorts with the input array size and number of trials.

2. Add variables and methods to SortArrayInstrumented to compute the total of the squares
of the number of comparisons. If the number of comparisons made by three calls were 3, 5,
and 2, the sum of the squares would be 9 + 25 + 4. The variance of a list of values is the
average of the squares of the values minus the square of the average. For the given values,
the average is 10/3 and the variance is 38/3–(10/3)2. The standard deviation is the square
root of the variance. Use this to compute and display the standard deviation in SortDriver.

Lab Manual for Data Structures and Abstractions with Java ™ 109

3. Another way of measuring the performance of a sort is by the amount of data movement it
must do. Anytime an assignment is made using the array, add one to the number of moves.
For example, a swap operation would add 3 to the number of moves. Add variables and
methods to SortArrayInstrumented to compute the total, minimum, and maximum number
of moves. Add code to SortDriver to display them.

NNoottee: This measure is relatively unimportant in Java since the sorts work with arrays of
references to objects. Because of this, only references are being moved and not the objects
themselves, and the time to complete the swap will not depend on the size of object.

4. Bubble sort is an older sort whose performance is not competitive with the other basic sorts.
Outside of this exercise, you should not use bubble sort. One variant of bubble sort that
works on the first n items in an array uses the following algorithm.

First position is 0
Last position is n–2
While the first position is less than the last position

Last swap is first position
Loop i from first position to last position

If elements at positions i and i+1 are out of order
Swap the elements in positions i and i+1
Last swap is i

Last position is last swap

Implement and add statistics to bubble sort in SortArrayInstrumented. Compute the
minimum, maximum, and average number of comparisons done by bubble sort.

5. The given Shell sort works with increments of 1, 2, 4, 8, … (written in reverse order). The
performance of Shell’s sort can be improved by allowing more varied overlap between the
sequences. Implement two new versions of Shell’s sort that use the sequences.

1, 4, 13, 40, 121 (si = 3si–1 + 1)

and

1, 3, 7, 15, 31 (si = 2si–1 + 1)

Compute the minimum, maximum, and average number of comparisons done by these two
versions of Shell’s sort and compare with the original.

6. Generate nlog2n random positions in the list that are at least (log2n)2 apart. If the items are out
of order, switch them. Follow this by insertion sort. Compute the minimum, maximum and
average number of comparisons done by this sort and compare with the standard insertion
sort.

7. By counting the number of inversions in a list, you get a measure of how close the list is to
being sorted. Consider every pair of values. (There are n(n–1)/2 pairs.) Each pair that is out
of order contributes one to the number of inversions. Implement a method that counts the
number of inversions in an array of Comparable objects.

8. While measuring the performance of a sort against randomly generated arrays is important,
in real life data are often not random. Nearly sorted data are frequently encountered.
Develop a method that generates random arrays that have at most k inversions. (Hint:
Swapping two adjacent values adds at most one inversion.) Use this method to compute the
performance of the three sorts for k = n/2, k = n, and k = 2n.

111

LLaabb 99 AAddvvaanncceedd SSoorrttss

GGooaall
In this lab you will explore the performance of quick sort and merge sort. The merge operation for
merge sort will be modified. Partition from quick sort will be used in a new algorithm.

RReessoouurrcceess
• Chapter 11: An Introduction to Sorting

• Chapter 12: Faster Sorting Methods

• Lab9Graphs.pdf—Printable versions of the graphs for this lab

JJaavvaa FFii lleess
• SortArray.java
• CheckSort.java
• CheckKth.java
• TimeSort.java

IInnttrroodduucctt iioonn
As mentioned in the first recursion lab, timing code introduces a number of difficulties. Unlike the
number of comparisons, the time will vary from one test to the next. One reason for using timings
instead of comparisons is that different versions of quick sort will be examined where factors besides
the number of comparisons may affect the performance.

To make plotting the times easier, the ratio of the time with respect to quick sort on 100 values will be
used.

GGeenneerriicc RReeccuurrssiivvee SSoorrtt
Both quick sort and merge sort are recursive algorithms and have essentially the same algorithm.

Sort(L)
1. If small, just return L
2. Split L into L1 and L2

3. S1 is Sort(L1)
4. S2 is Sort(L2)
5. Return combine(S1, S2)

Merge sort does its work on the way up the recursion tree. Its split is easy. It divides the list in half. If
merge sort is run in place on an array, the split operation consists of just computing the index of the
middle. Combining the sorted lists, though, is where it does the work. The merge method will
combine two sorted lists into one.

Quick sort, on the other hand, does its work on the way down the recursion tree. Its split is
performed by the partition method, which will pick an element (pivot) in the list and then order the
rest of the list with respect to it. The combination method for quick sort, on the other hand, is easy.
The sorted lists just need to be spliced together. If quick sort is run in place on an array, the values are
in their final positions already and the combine operation is “do nothing.”

The split of quick sort depends on which data value is used as the pivot. Consequently, the
performance of quick sort will vary depending on the order of values in the array to be sorted. Merge
sort, on the other hand, will always split the list in half and is much less sensitive to the order of
values in the array.

Lab 9 Advanced Sorts112

VVaarriiaatt iioonnss ooff QQuuiicckk SSoorrtt
The basic version of quick sort presented by most other textbooks has a partition method that chooses
a fixed element as the pivot. Usually, either the first or last value in the range to be split is chosen.
Quick sort then proceeds according to the general algorithm.

In practice, quick sort is the fastest general-purpose sort available, but there are a couple standard
variations that improve the performance by a marginal amount.

The first improvement (version2QuickSort in the lab) is to notice that for small size lists, insertion
sort is faster than quick sort. In part, the performance of quick sort is affected by the cost of doing a
recursive call. An iterative insertion sort avoids this cost. Eventually, the increasing number of
comparisons that insertion sort does will overtake the benefit of not doing the method calls. The
improvement is to change the base case. For lists that are small, use an insertion sort. Instead of
making a lot of calls to insertion sort, one single call after quick sort is finished will accomplish the
same task.

The second improvement (version3QuickSort in the lab) is to choose a better pivot. The closer the
split is to an even split, the better the performance of quick sort will be. Median-of-Three looks at
three fixed values, usually the first, middle, and last elements. The values are ordered, and the
middle value is chosen as the pivot. This has two benefits. The first benefit is that it is more likely that
there will be a good split and the average performance is improved. Even so, a good split is not
guaranteed and the worst case performance is still O(n2). The second benefit is that the worst case for
the basic algorithm is on lists that are nearly sorted. Median-of-Three guarantees a good split on
sorted data. Since nearly sorted data are fairly common, this shifts the worst case to orders that you
expect to see less often.

MMeerrggee
The basic version of merge uses an extra array during merging. The following picture shows an
intermediate state of the merge.

Once all the values have been compared and placed in the extra array, the sorted values are copied
back. Doing an in place merge that still has O(n) behavior is a more challenging task.

PPaarrtt iitt iioonn
Partition is a surprisingly tricky algorithm. The basic version used in the lab will pick the last value as
the pivot. Two indices are used to scan the array. The first index scans the array from the left, looking
for a value that is greater than the pivot. The second index scans the array from the right, looking for
a value that is less than the pivot. (The pivot will be not scanned.) As long as the indices have not
crossed over, the found values will be swapped.

Lab Manual for Data Structures and Abstractions with Java ™ 113

Notice that all values from 9 on are greater than or equal to the pivot. All values left of the 9 are less
than or equal to the pivot. The final step is to swap the pivot to split the partition.

Lab 9 Advanced Sorts114

PPaarrtt iitt iioonn wwiitthh MMeeddiiaann--ooff--TThhrreeee
With Median-of-Three, partition first orders the values in the first, middle, and last positions.

At this point, partition continues similarly to the basic version. Note that the first and last elements
are guaranteed to be in the correct half of the partition.

Lab Manual for Data Structures and Abstractions with Java ™ 115

All values from 7 on are greater than or equal to the pivot. All values left of the 7 are less than or
equal to the pivot. The final step is to swap the pivot to split the partition.

Lab 9 Advanced Sorts116

PPrree--LLaabb VViissuuaall iizzaattiioonn

BBiittoonniicc SSeeqquueennccee
An in-place merge will be developed that will use the idea of a bitonic sequence. A bitonic sequence
of values is one that can be divided into two parts. In one part, the values are increasing, and in the
other part the values are decreasing.

For example, the following is a bitonic sequence.

A sequence is also bitonic if it can be rotated and satisfy the preceding condition.

The following is, therefore, also a bitonic sequence.

The following is a sequence that is not bitonic. No rotation can be found that will give just a single
partition where the values are increasing.

One final note: Either or both sequences can be empty. So the following sequence is bitonic.

Lab Manual for Data Structures and Abstractions with Java ™ 117

BBiittoonniicc SSpplliitt
Given a bitonic sequence that has an even number of values, it can be split into two sequences. In the
split operation, the list is divided into equal halves. The first values in each half are compared and, if
out of order, they are swapped. Then the second values are compared, and so on until all values have
been compared.

What is the result after all pairs have been compared and swapped if out of order?

A bitonic split guarantees that all values in the first half are less than or equal to all values in the
second half. Furthermore, it guarantees that each of the halves is a bitonic sequence.

What is the largest value in the first half?

What is the smallest value in the second half?

Give a rotation of the values in each half so that the values increase and then decrease.

Give an algorithm for bitonic split.

Lab 9 Advanced Sorts118

BBiittoonniicc MMeerrggee
Given a bitonic sequence that has a number of values that is a power of 2, it can be merged into a
single increasing sequence. As was seen, a bitonic split will result in a partition where all values in
the first half are ordered with respect to all values in the second half. Since the resulting halves are
also bitonic sequences, they each can be split. And then the quarters can be split, and so on.

Consider the following bitonic sequence of length 8.

What is the result after applying bitonic split?

What is the result after applying bitonic split to each of the halves?

What is the result after applying bitonic split to each of the quarters?

Suppose that there is a bitonic sequence which has n = 2k values. How many levels (splits of the same
size) of bitonic splitting are needed?

In each level, how many comparisons are made?

Lab Manual for Data Structures and Abstractions with Java ™ 119

What is the total number of comparisons made?

Give an algorithm for bitonic merge.

BBiittoonniicc MMeerrggee SSoorrtt
Given an appropriate bitonic sequence, it can be sorted using a bitonic merge. Think about the step
just before merge does its combine. It has two portions of the array that are in increasing order. If one
of the portions were reversed, the combination of the two portions would be a bitonic sequence. Then
bitonic merge can be applied, resulting in a sorted array.

The advantage of the bitonic merge is that it can be done in place. Unfortunately, because the bitonic
merge does not have linear time complexity, the bitonic merge sort is not O(n log2 n) but instead is
O(n (log2 n)2).

OOrrddeerr SSttaatt iisstt iiccss
Suppose there is a list of k values: x1, x2, x3, … xk. One statistic that gives a measure of the central
tendency of the values is called the median. If the values are sorted, the median is the middle value.
Minimum and maximum are statistics that give the first and last values in the sorted list.
Generalizing, the kth-order statistic is the kth value in the sorted list.

An obvious algorithm for finding the kth-order statistic for an array of values is:

kth(A, k)
1. Sort A
2. return the kth value in A

The performance of this algorithm will depend on the sort used. For quick sort, the average
performance would be O(n log2 n). It can be done faster, though.

Lab 9 Advanced Sorts120

Consider an array A containing the values 1, 2, …, 10.

For this special array, the kth-order statistic is just the value k. After the array is sorted, at what
location will the value k be found?

Consider the effects of partition. After partition is called, the array has been rearranged to:

If you were looking for the fourth-order statistic, in which part of the array will it be?

If you were looking for the sixth-order statistic, in which part of the array will it be?

If you were looking for the eighth-order statistic, in which part of the array will it be?

Lab Manual for Data Structures and Abstractions with Java ™ 121

This suggests that a recursive auxiliary algorithm can be designed to find the kth-order statistic using
partition.

Give a recursive design for the kth-order statistic.

IIddeenntt iiffyy tthhee pprroobblleemm::

IIddeenntt iiffyy tthhee ssmmaall lleerr pprroobblleemmss::

IIddeenntt iiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::

IIddeenntt iiffyy tthhee bbaassee ccaasseess::

CCoommppoossee tthhee rreeccuurrss iivvee ddeeffiinniittiioonn::

Lab 9 Advanced Sorts122

Trace the algorithm in finding the third-order statistic on the following array. (Show the result after
each partition.) Once part of the array has been eliminated from consideration, just leave the values
blank.

Lab Manual for Data Structures and Abstractions with Java ™ 123

DDiirreecctteedd LLaabb WWoorrkk

The basic and advanced sorts have been implemented in the SortArray class. The class CheckSort
will generate some arrays, call a sorting routine, and check that it correctly sorts the values. The class
TimeSort will be used to time the sorts.

DDeecciiddiinngg oonn MMiinniimmuumm SSiizzee
SStteepp 11.. If you have not done so, look at the implementation of the sorts in SortArray.java.
Look at the code in TimeSort.java. Compile the classes SortArray and TimeSort.

SStteepp 22.. Run the main method in TimeSort. Enter 100 for the array size, 5000 for the number of
trials, and 100 for the seed. Record the values in the following table. (If you get 0 for the quicksort
time, redo with an increased number of trials.)

TIME FOR BASIC
QUICKSORT

TIME FOR
INSERTION SORT

RATIO OF TIMES

Size=100

Checkpoint: The actual values will depend on the platform. Quick sort should be fastest. Merge sort
should be next fastest and roughly 1.7 times slower than basic quick sort. Insertion sort should be the
slowest and be roughly 4 times slower than basic quick sort.

The first goal is to decide on an upper bound on the minimum size for arrays where quick sort
should be invoked.

SStteepp 33.. Fill in the following table. Use 10000 for the number of trials and 100 for the seed.

TIME FOR BASIC
QUICKSORT

TIME FOR
INSERTION SORT

RATIO OF TIMES

Size=2
Size=4
Size=6
Size=8
Size=10
Size=12
Size=14
Size=16
Size=18
Size=20

SStteepp 44.. It is expected that for small size lists, insertion sort will be faster than quick sort. Draw a
line at the point where the ratio is 1 (i.e., the times are equal). (As mentioned in the Introduction,
these times may not be consistent from execution to execution.)

You would expect that at the boundary where the times are equal, you could replace the recursive
quick sort call with a call to insertion sort and the time would remain the same. In fact, the improved
version of quick sort should be able to do better. Instead of calling insertion sort multiple times, it will
wait until quick sort is finished and then make just a single call to insertion sort.

SStteepp 55.. Make a copy of timebasicQuickSort. Rename it to timeVersion2QuickSort. Change
the call to version2QuickSort.

SStteepp 66.. Just after timing basicQuickSort, create a loop on minSize that runs from 2 to 20.
SStteepp 77.. Copy the nine lines that time merge sort into the body of the loop.

SStteepp 88.. Change the lines so that it reports for version 2 of quick sort.

SStteepp 99.. Add the following line at the beginning of the loop:

SortArray.setQuickSortMinimumSize(minSize);

Lab 9 Advanced Sorts124

SStteepp 1100.. Add a line to print minSize in the loop.

SStteepp 1111.. Fill in the following table. Use 1000 for the size of the list, 1000 for the number of trials,
and 10 for the seed.

TIME FOR VERSION
2 QUICKSORT

RATIO OF TIMES

minSize = 2
minSize = 3
minSize =4
minSize = 5
minSize = 6
minSize = 7
minSize = 8
minSize = 9
minSize = 10
minSize = 11
minSize = 12
minSize = 13
minSize = 14
minSize = 15
minSize = 16
minSize = 17
minSize = 18
minSize = 19
minSize = 20

SStteepp 1122.. Plot the ratios as points on the following graph.

SStteepp 1133.. Draw a curve approximating the points with a single minimum. It will look something
like this:

SStteepp 1144.. Choose a value that is close to the minimum of the curve. It should be less than the upper
bound that was found earlier. Record that value here.

Lab Manual for Data Structures and Abstractions with Java ™ 125

TTiimmiinngg tthhee SSoorrttss
SStteepp 1155.. Comment out the for loop you added to main of TimeSort.

SStteepp 1166.. Make a copy of timeVersion2QuickSort. Change the name to
timeVersion3QuickSort. Change it so it calls version3QuickSort().

SStteepp 1177.. Make two copies of the lines in main that time merge sort.

SStteepp 1188.. Change the first copy to use version 2 quick sort instead of merge sort.

SStteepp 1199.. Change the second copy to use version 3 quick sort instead of merge sort.

SStteepp 2200.. Add a call to setQuickSortMinimumSize just before the two copies. Use the value you
recorded at the end of the previous section as the argument.

Because different machines will have different performance, the absolute time will not be used.
Instead the ratio of the time with respect to basic quick sort on an array of size 100 will be used.

SStteepp 2211.. Create a new variable of type double named quickSort100Time and assign it the value
trials * ##### * 1000,

where ##### is the value you recorded for the time of quick sort in the first table.

SStteepp 2222.. Copy the print statement for the ratio from the merge sort section to section for basic
quick sort.

SStteepp 2233.. Change the print statement so it uses quickSortTime instead of mergeSortTime.

SStteepp 2244.. In all of the print statements that compute a ratio, change them so that they use
quickSort100Time in the denominator. (There should be five in all.)

SStteepp 2255.. Run the program with 1000 for the size, 1 for the number of trials, and 10 for the initial
seed. Note the time for computing the insertion sort. For the following table, pick the number of trials
so that the total insertion sort computation time is at least 1 minute.

TTrr iiaallss::

Lab 9 Advanced Sorts126

SStteepp 2266.. Fill in the following table. Use the number of trials you computed in the previous step.
Use 10 for the seed.

RATIO FOR
BASIC

QUICKSORT

RATIO FOR
QUICK SORT

II

RATIO FOR
QUICK SORT

III

RATIO FOR
MERGE

SORT

RATIO FOR
INSERTION

SORT
Size=100
Size=200
Size=300
Size=400
Size=500
Size=600
Size=700
Size=800
Size=900

Size=1000

SStteepp 2277.. Plot the points for the ratios for the three quick sort versions and merge sort in the
following graph. (Use different colors for the points.) Draw smooth curves approximating the points.

Lab Manual for Data Structures and Abstractions with Java ™ 127

SStteepp 2288.. Plot the points for the ratios for basic quick sort, merge sort, and insertions sort in the
following graph. Draw smooth curves approximating the points.

SStteepp 2299.. Use the value of the ratio for basic quick sort with an array size of 500 (n=500) to solve
the equation:

ratio = kquick n log2 n

for kquick.

SStteepp 3300.. Use the value of the ratio for merge sort with an array size of 500 to solve the equation:

ratio = kmerge n log2 n

for kmerge.

Lab 9 Advanced Sorts128

SStteepp 3311.. Plot the points for the ratios for basic quick and merge sort on the following graph.

SStteepp 3322.. Draw the curves:

kquick n log2 n

and

kmerge n log2 n

for the computed values of kquick and kmerge.

SStteepp 3333.. Use the value of the ratio for insertion sort with an array size of 500 to solve the equation

ratio = kinsertion n2

for kinsertion. (n=500)

SStteepp 3344.. Plot the points for the ratios of insertion sort on the following graph.

SStteepp 3355.. Draw the curve:

kinsertion n2

for the computed value of kinsertion.

Lab Manual for Data Structures and Abstractions with Java ™ 129

BBiittoonniicc MMeerrggee
SStteepp 11.. In SortArray make a copy of the code for merge sort.

SStteepp 22.. In the copy, change merge to bitonicMerge.

SStteepp 33.. Comment out the code from the body of the bitonic merge.

SStteepp 44.. Add code that does a bitonic split on the whole bitonic sequence (the first half in sorted
order combined with the second half in reverse sorted order.) Refer to the Pre-Lab.

SStteepp 55.. Finish the code for bitonic merge so that it will do the appropriate bitonic spilt operations
on smaller and smaller sections of the array. This can be done either iteratively or recursively.

SStteepp 66.. Add code in bitonicMergeSort before the call to bitonicMerge that will reverse the
second half.

SStteepp 77.. In CheckSort, change the call from insertionSort to bitonicMergeSort.

Checkpoint: Run CheckSort with an array size of 512. Verify that bitonic merge sort works correctly.
If it fails, debugging with array sizes that are small (like 2, 4, and 8) may be helpful. Remember that
the array size must be a power of 2.

SStteepp 88.. Make a copy of timeMergeSort().

SStteepp 99.. Change the name to timeBitonicMergeSort.

SStteepp 1100.. Modify it to time the bitonic merge sort.

SStteepp 1111.. Make a copy of the nine lines in main that time merge sort.

SStteepp 1122.. Make the copy time bitonic merge sort.

SStteepp 1133.. Comment out the code that times insertion sort and versions 2 and 3 of quick sort.

Fill in the following table. Use the number of trials you computed for the previous section. Use 10 for
the seed.

RATIO FOR
BASIC

QUICKSORT

RATIO FOR
MERGE

SORT

RATIO FOR
BITONIC
MERGE

SORT
Size=128
Size=256
Size=512
Size=1024
Size=2048

Lab 9 Advanced Sorts130

SStteepp 1144.. Use the value of the ratio for bitonic merge sort with an array size of 512 to solve the
equation

ratio = kbitonic n (log2 n)2

for kbitonic.

SStteepp 1155.. Plot the points for the ratios for merge sort and bitonic merge sort on the following
graph.

SStteepp 1166.. Draw the curves

kmerge n log2 n
and

kbitonic n (log2 n)2

for the computed values of kmerge and kbitonic.

OOrrddeerr SSttaatt iisstt iiccss
SStteepp 1177.. In SortArray look at the existing code for kthItem(). The private recursive method
needs to be completed.

SStteepp 1188.. Refer the algorithm from the Pre-Lab Exercises and complete the kthItem() method.

Checkpoint: Run CheckKth with an array size of 10. If it passes, run it again with an array size of
1000. If it fails, debug and retest.

SStteepp 1199.. Make a copy of timeQuickSort().

SStteepp 2200.. Change the name to timeKth().

SStteepp 2211.. Modify it to time kthItem(). Always have it get the smallest item (k=1).

SStteepp 2222.. Make a copy of the nine lines in main that time merge sorts.

SStteepp 2233.. Make the copy use timeKth().

Lab Manual for Data Structures and Abstractions with Java ™ 131

SStteepp 2244.. Fill in the following table. Use the number of trials you computed for the previous
section. Use 10 for the seed.

RATIO FOR
BASIC

QUICKSORT

RATIO FOR K-
TH ITEM

Size=100
Size=200
Size=300
Size=400
Size=500
Size=600
Size=700
Size=800
Size=900
Size=1000

SStteepp 2255.. Use the value of the ratio for kthItem() item with an array size of 500 to solve the
equation

ratio = kkth n

for kkth.

SStteepp 2266.. Plot the points for the ratios for basic quick sort and kthItem()on the following graph.

SStteepp 2277.. Draw the curves

kquick n log2 n
and

kkth n

for the computed values of kquick and kkth.

Lab 9 Advanced Sorts132

PPoosstt--LLaabb FFooll llooww--UUppss

1. Create a method checkPowerOf2(int n) that returns true if n is a power of 2. Use this
method in the public version of bitonicMergeSort to throw an exception if the argument n
is not a power of 2.

2. Create a new version of bitonic merge that will work with an odd number of values. HHiinntt:
Compare values as before. The extra value is at the end of the first list. Decide if it must be in
the first or second half and adjust the subsequent bitonic splits appropriately. Use CheckSort

to verify that the new code works correctly. Redo the timing with the new version and
compare with the original.

3. Create two versions of bitonic merge sort: bitonicMergeSortAscending and
bitonicMergeSortDescending. Remove the call to reverse and replace the recursive calls to
bitonicMergeSort with the two new methods. Use CheckSort to verify that the new code
works correctly. Redo the timing with the new version and compare with the original.

4. Replace the iterative version of bitonicMerge with a recursive version (or vice-verse if you
implemented a recursive bitonic merge.) Use CheckSort to verify that the new code works
correctly. Redo the timing with the new version and compare with the original.

5. Implement kthItem using basicPartition. Use CheckKth to verify that the new code works
correctly. Redo the timing with the new version and compare with the original. Explain the
results.

6. Implement an iterative version of kthItem. Use CheckKth to verify that the new code works
correctly. Redo the timing with the new version and compare with the original.

7. Create a second random number generator and change timeKthItem() to look for a random
position in the sorted list. Compare the times with searching for the smallest item (first
position).

133

LLaabb 1100 SSeeaarrcchheess

GGooaall
In this lab you will explore the performance of various searches. You will implement new searches
including an alternate version of binary search and a trinary search. You will modify the searches to
work with the List API from Java.

RReessoouurrcceess
• Chapter 16: Searching

• java.sun.com/j2se/1.5.0/docs/api—API documentation for the Java List interface

• Lab10Graphs.pdf—Printable versions of the graphs for this lab

JJaavvaa FFii lleess
• SortArray.java
• CheckSearch.java

• TimeSearch.java
• CheckSortList.java
• CheckSearchList.java

IInnttrroodduucctt iioonn
One reason many lists are sorted is to improve the performance of searching. Linear search has
performance that, on average, is O(n) in the size of the list. Binary search will work in time that is
O(log2 n), but it requires that the list is sorted.

Suppose you wanted to search a list for just a single data value? Which would be faster, linear search
or binary search? The answer depends on the data. If the data are already sorted, binary search wins.
On the other hand, if the data are unsorted, the cost of the binary search must include the sort and
plain linear search wins.

Consider what happens if you need to search for more than one data value. The linear search has no
initial cost, but each subsequent search costs O(n). The binary search has an initial cost of O(n log2 n)
for the sort, but each subsequent search only costs O(log2 n). If the number of searches is large
enough, binary search will win.

Another way of viewing this is that the O(n log2 n) cost of the sort is spread out over k searches.
Therefore, the per search cost for binary sort is O((n/k) log2 n + log2 n).

PPrree--LLaabb VViissuuaall iizzaattiioonn

SSpplliitt tt iinngg aa RRaannggee iinn aann AArrrraayy
As with the other recursive algorithms that work on an array, binary search works with a range of
values. When an algorithm of this type fails, it is usually for a small range.

In the standard version of binary search, the formula for computing the index of the middle value is

middle = (first + last)/ 2 .

Lab 10 Searches134

Consider the following range of values:

INDEX … 3 4 …
VALUE 20 40

What is the index of the middle?

There are three cases that will be considered depending on the relation between the middle value and
the value that is being searched for.

TThhee mmiiddddllee vvaalluuee iiss ggrreeaatteerr tthhaann tthhee vvaalluueess bbeeiinngg sseeaarrcchheedd ffoorr..
In this case, the value that is being searched for must be to the left of the middle. Make a recursive
call to the range first to mid–1. In the preceding example, if the desired value was 10, what is the
next search range?

TThhee mmiiddddllee vvaalluuee iiss tthhee vvaalluuee bbeeiinngg sseeaarrcchheedd ffoorr..
In this case, no more work is needed, just return true.

TThhee mmiiddddllee vvaalluuee iiss lleessss tthhaann tthhee vvaalluuee bbeeiinngg sseeaarrcchheedd ffoorr..
In this case, the value that is being searched for must be to the right of the middle. Make a
recursive call to the range mid+1 to last. In the preceding example, if the desired value was 45,
what is the next search range?

Notice that it is possible for the range to become empty.

This style of splitting for binary search has an early exit feature. As the array is probed, if the value is
found, stop the recursion and return.

BBiinnaarryy SSeeaarrcchh iinn aann AArrrraayy wwiitthh LLaattee CChheecckkiinngg
Suppose there is an array with n values.

How many of those values, if searched for, will have an early exit at the first split?

How many of those values, if searched for, will have an early exit at the second split?

How many of those values, if searched for, will have an early exit at the third split?

Lab Manual for Data Structures and Abstractions with Java ™ 135

How many of those values, if searched for, will have an early exit at the final split?

Look at the code for binary search in SortArray and notice that there are potentially two
comparisons made. One by equals() and the other by compareTo(). Most of the values in the array
will not benefit from early exit and will need close to 2 log2 n comparisons. If the value being
searched for is not in the array, no early exit can take place.

There is another version of binary search that only does one comparison per recursive call. The range
is reduced until there is just a single value left. That value is then compared to the desired value.

To handle this, splitting the range must change.

There are still three cases, but two of them will be handled together.

TThhee mmiiddddllee vvaalluuee iiss ggrreeaatteerr tthhaann tthhee vvaalluueess bbeeiinngg sseeaarrcchheedd ffoorr..
In this case, the value that is being searched for must be to the left of the middle. What should the
range be for the next search?

TThhee mmiiddddllee vvaalluuee iiss tthhee vvaalluuee bbeeiinngg sseeaarrcchheedd ffoorr..
We need to guarantee that the next search range will contain the middle value. What should the
range be for the next search?

TThhee mmiiddddllee vvaalluuee iiss lleessss tthhaann tthhee vvaalluuee bbeeiinngg sseeaarrcchheedd ffoorr..
In this case, the value that is being searched for must be to the right of the middle. What should
the range be for the next search?

Which two cases use the same range?

This time, the range should not become empty but will reduce to a single value. This affects the base
case.

Lab 10 Searches136

Complete the design for late check binary search on an array. Use a recursive auxiliary method that
reduces the range of values considered. Make sure that each recursive call will do either equals() or
compareTo(), but not both.

IIddeenntt iiffyy tthhee pprroobblleemm::

IIddeenntt iiffyy tthhee ssmmaall lleerr pprroobblleemmss::

IIddeenntt iiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::

IIddeenntt iiffyy tthhee bbaassee ccaasseess::

CCoommppoossee tthhee rreeccuurrss iivvee ddeeffiinniittiioonn::

Show the operation of your definition when searching for the value 3 in the array [2 4 5 6 7 9].

Lab Manual for Data Structures and Abstractions with Java ™ 137

TTrriinnaarryy SSeeaarrcchh iinn aann AArrrraayy
Another way that you might try to speed up binary search is to split the array into three parts instead
of two.

Given that first and last are the indices of the range of values to consider, propose formulas that will
compute two middle values that trisect the range.

middle1 =

middle2 =

Test these formulas on each of the following small ranges.

Lab 10 Searches138

For each of the following range of values, compute middle1 and middle2.

INDEX … 4 ….
VALUE 40

middle1 =

middle2 =

INDEX … 3 4 ….
VALUE 20 40

middle1 =

middle2 =

INDEX … 3 4 5 …
VALUE 20 40 60

middle1 =

middle2 =

INDEX … 4 5 6 7 …
VALUE 40 60 90 110

middle1 =

middle2 =

Lab Manual for Data Structures and Abstractions with Java ™ 139

Are middle1 and middle2 always different?

The trinary search can either use either strategy of early exit or late checking for equality. In either
case, there are now five cases that must be considered.

TThhee vvaalluuee bbeeiinngg sseeaarrcchheedd ffoorr iiss lleessss tthhaann mmiiddddllee11..
What should the range be for the next search?

TThhee vvaalluuee bbeeiinngg sseeaarrcchheedd ffoorr iiss eeqquuaall ttoo mmiiddddllee11..
What should the range be for the next search?

TThhee vvaalluuee bbeeiinngg sseeaarrcchheedd ffoorr iiss ggrreeaatteerr tthhaann mmiiddddllee11 aanndd lleessss tthhaann mmiiddddllee22..
What should the range be for the next search?

TThhee vvaalluuee bbeeiinngg sseeaarrcchheedd ffoorr iiss eeqquuaall ttoo mmiiddddllee22..
What should the range be for the next search?

TThhee vvaalluuee bbeeiinngg sseeaarrcchheedd ffoorr iiss ggrreeaatteerr tthhaann mmiiddddllee22..
What should the range be for the next search?

Think about what happens to the splits for small ranges. Can there be empty ranges?

Lab 10 Searches140

Complete the design for trinary search on an array. Use a recursive auxiliary method that reduces the
range of values considered.

IIddeenntt iiffyy tthhee pprroobblleemm::

IIddeenntt iiffyy tthhee ssmmaall lleerr pprroobblleemmss::

IIddeenntt iiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::

IIddeenntt iiffyy tthhee bbaassee ccaasseess::

CCoommppoossee tthhee rreeccuurrss iivvee ddeeffiinniittiioonn::

Show the operation of your definition when searching for the values 3, 5, 6, and 10 in the array [2 4 5
6 7 9]. (Depending on the actual algorithm, less than three recursive calls maybe needed. If so, just
cross off the extra boxes in the diagram.)

Lab Manual for Data Structures and Abstractions with Java ™ 141

These are not exhaustive test cases by any means.

Lab 10 Searches142

DDiirreecctteedd LLaabb WWoorrkk
Linear and binary search have been implemented in the SortArray class. The class CheckSearch will
generate some arrays, call a search routine, and check that it correctly searches for values. It
guarantees that some values not in the array are searched for. The class TimeSearch will be used to
time the searches.

TTiimmiinngg tthhee SSeeaarrcchheess
SStteepp 11.. If you have not done so, look at the implementation of the search routines in
SortArray.java. Look at the code in TimeSearch.java. Compile the classes SortArray and
TimeSearch.

SStteepp 22.. Run the main method in TimeSort. Enter 100 for the array size, 10000 for the number of
trials, 1 for the number of searches, and 100 for the seed. Record the time in the following table.

TIME FOR VERSION
3 QUICKSORT

Size=100

SStteepp 33.. In the definition of quickSort100Time, replace 6e-4 with the value you found in the
previous step.

SStteepp 44.. Run the main method in TimeSort. Enter 100 for the array size, 10000 for the number of
trials, 1 for the number of searches, and 100 for the seed. Record the values in the following tables.

TIME FOR LINEAR
SEARCH

Size=100

RATIO FOR
QUICKSORT

RATIO FOR
LINEAR
SEARCH

RATIO FOR A
SINGLE SORT

THEN BINARY
SEARCH

RATIO FOR
SORT THEN

BINARY
SEARCH

Size=100

Checkpoint: The actual values will depend on the platform. The ratio for quick sort should be about
1. Linear search should have a ratio that is about 0.1. Since only one search is being performed on
each array, both binary searches should have a time that is approximately 1. In this case, the major
cost for the binary searches is the sort.

SStteepp 55.. Run the main method in TimeSort. Enter 100 for the array size, 10000 for the number of
trials, 10 for the number of searches, and 100 for the seed. Record the values in the following table.

RATIO FOR
QUICKSORT

RATIO FOR
LINEAR
SEARCH

RATIO FOR A
SINGLE SORT

THEN BINARY
SEARCH

RATIO FOR
SORT THEN

BINARY
SEARCH

Size=100

Checkpoint: The values should be about the same as before with the exception of the single sort
followed by binary searches, which should be about 0.1. The cost of the single sort has been divided
between the 10 searches.

The first goal is to complete timings for linear and binary search. Since it has been established that
sorting the array each time before doing the binary search has performance that is essentially the
same as doing the sort, it will be dropped from timing. To reduce the effect of the sort required for

Lab Manual for Data Structures and Abstractions with Java ™ 143

binary search, a large number of searches will be done. Note that the leading term in the time for
doing a single sort followed by multiple binary searches will still be nlogn. If n is large compared to
the number of searches the sorting time will dominate.

SStteepp 66.. Comment out the code for timing quick sort.

SStteepp 77.. Comment out the code for timing sort followed by binary search.

SStteepp 88.. Take 6 seconds and divide it by the time recorded for linear search on an array of size 100
and record it here.

S= NUMBER OF
SEARCHES TO DO

SStteepp 99.. Fill in the following table. Use 1 for number of trials, S for the number of searches, and
100 for the seed.

RATIO FOR LINEAR
SEARCH

RATIO FOR BINARY
SEARCH

Size=100
Size=200
Size=300
Size=400
Size=500
Size=600
Size=700
Size=800
Size=900

Size=1000

SStteepp 1100.. Use the value of the ratio for linear search with an array size of 500 (n=500) to solve the
equation:

ratio = klinear n

for klinear.

SStteepp 1111.. Use the value of the ratio for binary search with an array size of 500 to solve the equation:
ratio = kbinary log2 n

for kbinary.

SStteepp 1122.. Plot the points for the ratios for linear and binary search on the following graph.

SStteepp 1133.. Draw the curves:

klinear n
and

kbinary log2 n

for the computed values of klinear and kbinary.

Lab 10 Searches144

As seen earlier, for a small number of searches linear search is faster than sorting followed by doing
binary search. The next goal is to determine at what point it is faster to do the binary search.

SStteepp 1144.. Fill in the following table. For each given size, find the number of searches where the
times for linear and binary searches become the same. Use 100 for the number of trials and 100 for the
seed. You may wish to add loops to TimeSearch to automate its generation.

NUMBER OF
SEARCHES AT

WHICH THE TIME
FOR LINEAR AND

BINARY SEARCH IS
THE SAME

Size=100
Size=200
Size=300
Size=400
Size=500
Size=600
Size=700
Size=800
Size=900

Size=1000

Lab Manual for Data Structures and Abstractions with Java ™ 145

SStteepp 1155.. Plot the points for the number of searches required for linear and binary search to take
the same amount of time on the following graph.

SStteepp 1166.. Which of the following best fits the points? (Solve for k at 500 and then sketch the curve.)

k n

k log2 n

k n0.5

k n log2 n

k n2

AAlltteerrnnaattee VVeerrssiioonn ooff BBiinnaarryy SSeeaarrcchh
As discussed earlier, the version of binary search implemented in SortArray checks for equality on
each recursive call. If it finds the value, it exits early and ends the recursion. The goal is to complete
and time the new version of binary search.

SStteepp 1177.. In SortArray, make a copy of the two methods named binarySearch() that implement
binary search.

SStteepp 1188.. In the copy, change binarySearch to version2BinarySearch everywhere.

SStteepp 1199.. Change the private method version2BinarySearch so that it does not exit the recursion
early, but only checks for equality at the very last recursive call. Refer to the Pre-Lab Exercises.

SStteepp 2200.. In CheckSearch, change the call from binarySearch to version2BinarySearch.

Checkpoint: Run CheckSearch with an array size of 10, number of trials of 10, and a seed of 10.
Verify that the new version of binary search works correctly. If it fails, debugging with array sizes
that are small may be helpful.

Run CheckSearch with an array size of 1000, number of trials of 1, and a seed of 10. Verify that the
new version of binary search works correctly.

SStteepp 2211.. Make a copy of timeSingleSortAndBinarySearch().

Lab 10 Searches146

SStteepp 2222.. Change the name to timeSingleSortAndVersion2BinarySearch.

SStteepp 2233.. Modify it to time version 2 binary search.

SStteepp 2244.. Make a copy of the nine lines in main that time a single sort and binary search.

SStteepp 2255.. Make the copy time timeSingleSortAndVersion2BinarySearch.

SStteepp 2266.. Fill in the following table. Use 1 for number of trials, S (from Step 8) for the number of
searches, and 100 for the seed.

RATIO FOR BINARY
SEARCH

RATIO FOR
VERSION 2 OF

BINARY SEARCH
Size=100
Size=200
Size=300
Size=400
Size=500
Size=600
Size=700
Size=800
Size=900

Size=1000

TTrriinnaarryy SSeeaarrcchh
The goal is to implement a search that splits the list into three parts instead of just two parts. Once the
search works, it will be timed and the performance will be compared with binary search.

SStteepp 11.. In SortArray make a copy of the two methods named binarySearch() that implement
binary search.

SStteepp 22.. In the copy, change binarySearch to trinarySearch everywhere.

SStteepp 33.. Change the private method trinarySearch so that it does a trinary search. Refer to the
Pre-Lab Exercises.

SStteepp 44.. In CheckSearch, change the call from version2BinarySearch to trinarySearch.

Checkpoint: Run CheckSort with an array size of 10, number of trials of 10, and a seed of 10. Verify
that trinary search works correctly. If it fails, debugging with array sizes that are small may be
helpful.

Run CheckSort with an array size of 1000, number of trials of 1, and a seed of 10. Verify that trinary
search works correctly.

SStteepp 55.. Make a copy of timeSingleSortAndBinarySearch().

SStteepp 66.. Change the name to timeSingleSortAndTrinarySearch.

SStteepp 77.. Modify it to time trinary search.

SStteepp 88.. Make a copy of the nine lines in main that time a single sort and binary search.

SStteepp 99.. Make the copy time timeSingleSortAndTrinarySearch.

SStteepp 1100.. Fill in the following table. Use 1 for number of trials, S (from Step 8) for the number of
searches, and 100 for the seed.

Lab Manual for Data Structures and Abstractions with Java ™ 147

RATIO FOR BINARY
SEARCH

RATIO FOR
TRINARY SEARCH

Size=100
Size=200
Size=300
Size=400
Size=500
Size=600
Size=700
Size=800
Size=900

Size=1000

SStteepp 1111.. Use the value of the ratio for trinary search with an array size of 500 to solve the equation
ratio = ktrinary log3 n

for ktrinary.

SStteepp 1122.. Plot the points for the ratios for binary and trinary search on the following graph.

SStteepp 1133.. Draw the curves

kbinary log2 n
and

ktrinary log3 n

for the computed values of kbinary and ktrinary.

Lab 10 Searches148

SStteepp 1144.. Now use the value of the ratio for trinary search with an array size of 500 to solve the
equation:

ratio = K log2 n

for K (Note that the base of the log is different from the base used in Step 11).

SStteepp 1155.. Draw the curve:

K log2 n

for the computed value of K on the previous graph.

SStteepp 1166.. What can you conclude about the order of growth of trinary search as compared with the
order of growth for binary search?

SSeeaarrcchh oonn aa LLiisstt
SStteepp 1177.. Make a new class named SortList.

SStteepp 1188.. Copy all the code from SortArray to SortList.

SStteepp 1199.. Remove all of the code except for the methods that perform swap, insertion sort, quick
sort version 3, sort first middle last, order, partition, linear search, and binary search.

SStteepp 2200.. Import the java.util package by adding the following statement at the top of the file.
import java.util.*;

SStteepp 2211.. Replace all of the T[] declarations with List<T>. (Anything that is just T, leave as is.)

SStteepp 2222.. Everywhere except on the left-hand side of an assignment statement, replace:

a[i]

with
a.get(i)

SStteepp 2233.. For occurences of a[i] on the left-hand side of assignment statements, replace:

a[i] = x;

with

a.set(i, x);

Checkpoint: SortList should now compile.

Verify that version 3 quick sort works by running CheckSortList. Use 10 lists of size 10. If it passes,
try again with a single list of size 1000. If it fails, debug and retest.

Verify that linear and binary searches work by running CheckSearchList. Use 10 lists of size 10. If it
passes, try again with a single list of size 1000. If it fails, debug and retest.

SStteepp 2244.. Make a new class named TimeSearchList.

SStteepp 2255.. Copy all the code from TimeSearch to TimeSearchList.

SStteepp 2266.. Remove the methods timeSortAndBinarySearch(),
timeSingleSortAndTrinarySearch(), and timeSingleSortAndVersion2BinarySearch().

Lab Manual for Data Structures and Abstractions with Java ™ 149

SStteepp 2277.. Look at the code in the method timeArrayCreation(). Replace it with code that will
generate a List<Integer> instead of an array. Generate the same data values. Examine the method
generateRandomList() in CheckSortList to see an example. Use ArrayList<Integer> as the type
of the list that is created. Make a similar change in the other timing methods.

SStteepp 2288.. Fill in the first two columns of the following table. Use 1 for number of trials, S/2 for the
number of searches, and 100 for the seed.

SStteepp 2299.. Change the code in TimeSearchList to create LinkedList<Integer> instead of
ArrayList<Integer>.

SStteepp 3300.. Fill in the last two columns of the table. Use 1 for number of trials, S/20 for the number of
searches, and 100 for the seed.

RATIO FOR
LINEAR
SEARCH

(ARRAY LIST)

RATIO FOR
BINARY
SEARCH

(ARRAY LIST)

RATIO FOR
LINEAR
SEARCH

(LINKED LIST)

RATIO FOR
BINARY
SEARCH

(LINKED LIST)
Size=100
Size=200
Size=300
Size=400
Size=500
Size=600
Size=700
Size=800
Size=900
Size=1000

SStteepp 3311.. Compare the ratios for linear search on an array list and on a linked list. What is the
relationship between the results?

SStteepp 3322.. Do the ratios for binary search on an array list and on a linked list satisfy the same
relationship that you found in the previous step?

Lab 10 Searches150

SStteepp 3333.. Plot the points for the ratios for linear search on an array list and linked list on the
following graph.

SStteepp 3344.. Which of the following best fits the points for the linked list?

k n

k log2 n

k n0.5

k n log2 n

k n2

Lab Manual for Data Structures and Abstractions with Java ™ 151

SStteepp 3355.. Plot just the points for the ratio for linear search on an array list on the following graph.

SStteepp 3366.. Which of the following best fits the points for the array list?
k n

k log2 n

k n0.5

k n log2 n

k n2

Lab 10 Searches152

SStteepp 3377.. Plot the points for the ratios for binary search on an array list and linked list on the
following graph.

SStteepp 3388.. Which of the following best fits the points for the linked list?

k n

k log2 n

k n0.5

k n log2 n

k n2

Lab Manual for Data Structures and Abstractions with Java ™ 153

SStteepp 3399.. Plot just the points for the ratio for binary search on an array list on the following graph.

SStteepp 4400.. Which of the following best fits the points for the array list?
k n

k log2 n

k n0.5

k n log2 n

k n2

SStteepp 4411.. Explain the results found in the previous four graphs.

Lab 10 Searches154

PPoosstt--LLaabb FFooll llooww--UUppss

1. Suppose the time to do k searches on an array of size n is nlog2n + klog2n. How large must n
be before the sorting time (first term) is larger than the searching time (second term)?

2. Create an iterative version of binarySearch. Use CheckSearch to verify that the new code
works correctly. Redo the timing with the new version and compare with the original.

3. Modify the recursive binary search so it only calls compareTo() once but still has early exit of
the recursion. Compare the timing with the original.

4. Develop and implement the other version of trinary search. If you did early exit trinary
search in the lab, implement trinary search with late checking.

5. Develop and implement a recursive search routine that uses a similar pattern to the kth-order
statistics from the last lab. Compare the performance with linear search.

6. Develop and implement a recursive search routine based on binary search that works with
numerical data. Assume that the data are evenly distributed. Use the values of the first and
last data items to decide where to split the list. This is similar to how most people search a
phone book. If you are looking for a name starting with the letter z, the first split will be
toward the end, whereas if the name starts with the letter a, the first split will be toward the
beginning. For example, suppose the value being searched for was 7. If the first value is 2 at
location 3 and the last value is 100 at location 20, then the split would be at the index 3+ [(7–
2)/(100–2)](20–3). Compare the performance with linear search.

7. Compare the ratios for quick sort on an array, ArrayList, and LinkedList. Determine the
order of growth for each. Implement selection sort and merge sort on a List. Do timings and
compare with the versions that work with an array.

8. Change the linear search in SortList so that it uses an iterator instead of the get() method.
Compare the performance with the original version. Can an iterator be used to speed up
binary search?

155

LLaabb 1111 DDiicctt iioonnaarryy CClliieenntt

GGooaall
In this lab you will use a dictionary in an animated application to highlight words that could be
misspelled in a text file.

RReessoouurrcceess
• Chapter 17: Dictionaries

• Appendix C: File Input and Output

• DictionaryInterface.html—API documentation for the DictionaryInterface ADT

• Wordlet.html—API documentation for a class representing a word with a flag for whether it
is spelled correctly

• LinesToDisplay.html—API documentation for a class representing a number of lines to be
displayed graphically

• java.sun.com/j2se/1.5.0/docs/api—API documentation for the Scanner class

• java.sun.com/j2se/1.5.0/docs/api—API documentation for the StringTokenizer class

• Spell.jar—The final animated application

JJaavvaa FFii lleess
In directory Spelling Checker

• FindDefaultDirectory.java
• Wordlet.java
• LinesToDisplay.java
• MisspellActionThread.java
• MisspellApplication.java
• HashedMapAdaptorr.java—in the DictionaryPackage

• There are other files used to animate the application. For a full description see Appendix A.

IInnppuutt FFii lleess
• check.txt—A short text file to check for possible spelling errors
• sampleDictionary.txt—A small dictionary

IInnttrroodduucctt iioonn
The dictionary ADT is set of associations between two items: the key and the value. A concrete
example is a dictionary, such as the Oxford English Dictionary. It associates words with their
definitions. Given a key (word), you can find its value (definition).

There are a number of ways you could implement the dictionary ADT. In this lab a hash table will be
used to implement the dictionary. The details of how hash tables work will be considered in depth
later (Chapter 19). For now, the important features of a hash table are that they allow fast access and
that the items in the hash table are not ordered by their keys.

Lab 11 Dictionary Client156

PPrree--LLaabb VViissuuaall iizzaattiioonn

LLooaaddiinngg tthhee DDiicctt iioonnaarryy
Given a dictionary of words and a word to be checked for spelling, what is the key? (What is being
searched for?)

Reading the file that contains correctly spelled words into the dictionary requires that the file must be
parsed (the file must be broken up into pieces each containing a single word). Sometimes the format
of the file will be tightly specified. In this case, the format will be pretty loose. The correct words will
be in a file. They will be separated by either space or return. Review Appendix C of the text and the
API for Scanner.

Write an algorithm for reading the words from a file. Assume that the file is already opened as an
instance of Scanner with the name input.

WWoorrddlleett CCllaassss
As the spelling checker executes, it will need to consider each word in the text. As it decides whether
a word is spelled correctly or not, that information will need to be associated with the word. The
function of the Wordlet class is to remember whether the word is spelled correctly.

The Wordlet class holds a chunk of text and a boolean variable indicating if the word is spelled
correctly. Review that class if you have not done so already.

Lab Manual for Data Structures and Abstractions with Java ™ 157

LLiinneessTTooDDiissppllaayy CCllaassss
A data structure is needed to hold the lines of wordlets that will be displayed by the animated
application. Here are the requirements for the class.

1. It must contain up to 10 lines of checked text.
2. It must know whether words are spelled correctly.
3. It must have a line of text that it is currently composing.
4. It must be able to add a wordlet to the current line.
5. It must be able to move to the next line of text.

Consider the wordlets in a single line. Would an array or a list be preferable for storing them?

Suppose that the initial state is

Show the new state if the wordlet “ ” (a single blank) is added.

What should be displayed in the animation?

Lab 11 Dictionary Client158

Show the new state if the wordlet “seven” is added instead.

What should be displayed in the animation?

Show the new state if the current line is ended.

What should be displayed in the animation?

Lab Manual for Data Structures and Abstractions with Java ™ 159

Suppose that the initial state is:

Show the new state if the line is ended and then the wordlet “fourteen” is added.

Are there more than ten lines of text to be displayed?

What should be displayed in the animation?

Lab 11 Dictionary Client160

Show the new state if the line is ended and then the wordlet “fifteen” is added.

Are there more than ten lines of text to be displayed?

What should be displayed in the animation?

Lab Manual for Data Structures and Abstractions with Java ™ 161

Given that the private state variables of the class are

public static final int LINES = 10; // Display 10 lines
private ArrayList<Wordlet> lines[];
private int currentLine;

Give an algorithm for adding a wordlet to the current line.

Give an algorithm for moving to the next line.

RReeaaddiinngg WWoorrddss
While parsing the words in the text file is similar to reading the words from the dictionary, it will
turn out that using a StringTokenizer will make the job easier. A double loop will be employed. A
Scanner will be used to read the lines and a StringTokenizer will be used to break up each line.
Consider the following lines of text.

Just some fun text! (You shouldn't take it seriously.)

Slowly she turned and said, "Bob, I don't know

if I like you any more. Do you know why?"

He replied "As the raven once said: 'Never more'".

Draw boxes around all the words.

What characters in the text indicated the beginning or end of a word (delimiters)?

Are there other characters that might be delimiters?

Lab 11 Dictionary Client162

In our application, we would like to mark words that could be incorrectly spelled within a given
body of text. This means that we will not be able to just read words (and discard the delimeters), but
will need to read everything into a wordlet.

Review the API for StringTokenizer and show how one can be created that satisfies the preceding
observations.

Give an algorithm that will read a file and create wordlets. Add each wordlet to the lines display. At
the end of every line, go to the next line in the lines display. Do not worry about checking the
spelling.

Algorithm:

CChheecckkiinngg tthhee SSppeellll iinngg
Some of the words that the string tokenizer will produce will be things like “!” and “120”. The
application will assume that if a word has no alpha characters in it, it should not be marked as
incorrect.

Write an algorithm that given a string will return true if all the characters are not alpha characters.
The isLetter() method in the Character class can be useful here.

Lab Manual for Data Structures and Abstractions with Java ™ 163

DDiirreecctteedd LLaabb WWoorrkk

LLooaaddiinngg tthhee DDiicctt iioonnaarryy
All of the classes needed for the MisspellApplication exist. Some of them need to be completed.
This application is based on the animated application framework. If you have not already, you
should look at the description of it in Appendix A. The classes that you will be completing are
LinesToDisplay and MisspellActionThread. The Wordlet class is also specific to this application.
Take a look at that code now if you have not done so already.

In the labs so far, no file input or output has been done. Today’s application will read from two files.
Different Java run time environments use different directories as their default when opening a file. It
might be the directory that the class is in or it may be somewhere else. The first goal is to find where
the default directory is.

SStteepp 11.. Compile and then run main from the class FindDefaultDirectory.

SStteepp 22.. Leave your Java environment temporarily and search for the file name DefDirHere.txt.

SStteepp 33.. Move the files sampleDictionary.txt and check.txt to the directory your particular
implementation of Java reads from and writes to.

SStteepp 44.. Compile the class MisspellApplication. Run the main method in
MisspellApplication.

Checkpoint: If all has gone well, you should get a graphical user interface with step controls along the
top and application setup controls on the bottom. There should be two text fields where you can enter
the name of a file containing the dictionary words and another file that contains the text to be
checked. Type check.txt for the text file and then press enter. There should be a message indicating
that it is now the text file. If not, check to make sure that you copied the file to the correct place. Type
sampleDictionary.txt for the dictionary file and then press enter. Again there should be a message
confirming the file is readable.

SStteepp 55.. In the method loadDictionary() in MisspellActionThread, add code that will read
the words and put them into the dictionary. The dictionary file contains words that are either
separated by spaces or lines. A single loop is needed. Refer back to the algorithm you wrote for the
Pre-Lab Exercises and complete the code.

SStteepp 66.. Just after reading in all the words, print the dictionary to System.out.

SStteepp 77.. In the method executeApplication, add a call to loadDictionary(). Immediately
after, set the variable dictionaryLoaded to true. When the application draws itself, it will now
indicate that the dictionary has been loaded. Add in the following line of code to make it pauses
before continuing. (For questions about the function of this method, see the discussion in Appendix
A.)

animationPause();

Checkpoint: Press step twice. The display should indicate that the dictionary was loaded. The
dictionary should be printed on output. Check it against the file.

CCoommpplleett iinngg LLiinneessTTooDDiissppllaayy
SStteepp 88.. Complete the constructor for the class LinesToDisplay.

SStteepp 99.. Refer to the Pre-Lab Exercises and complete the code for the method addWordlet().

Lab 11 Dictionary Client164

SStteepp 1100.. Refer to the Pre-Lab Exercises and complete the code for the method nextLine().

SStteepp 1111.. In executeApplication in MisspellActionThread, add the following four lines of
code.

myLines.addWordlet(new Wordlet("abc", true));
myLines.nextLine();
myLines.addWordlet(new Wordlet("def", false));
myLines.nextLine();

Checkpoint: Press step three times. The wordlet abc should be in black on one line and def should be
in red on the next line. If not, debug the code and retest.

SStteepp 1122.. Comment out the four lines of code entered in the previous step.

The next goal is to parse the text file into wordlets and put them in the display. For now all words
will be considered to have the correct spelling.

RReeaaddiinngg WWoorrddss
SStteepp 1133.. Refer to the Pre-Lab Exercises and complete the code in the method checkWords(). As
each wordlet is created, use checkWord() to determine if the spelling is correct. (It will just return
true.)

SStteepp 1144.. For the animation, add in the line
animationPause();

just after the call to nextLine(). (Why not put an animation step after adding every wordlet?)

Checkpoint: Step the application. Each line in the text file should appear exactly with all the text in
red. If not, debug the code and retest.

The final goal is to check the spelling of the wordlets.

CChheecckkiinngg tthhee SSppeellll iinngg
SStteepp 1155.. Complete the checkWord() method. You will check the word against the dictionary.
Return true if the word is in the dictionary.

Checkpoint: Step the application. Each line in the text file should appear exactly. The words in the
dictionary should now appear in black.

SStteepp 1166.. It would be nice if the punctuation did not show up in red. Refer to the algorithm from
the Pre-Lab Exercises and add code to checkWord() to return true if the word is all punctuation.

Final checkpoint: Step the application. Most of the punctuation should now be in black.

There are a number of improvements that can be made to this application. See the post-lab exercises
for some of them.

Lab Manual for Data Structures and Abstractions with Java ™ 165

PPoosstt--LLaabb FFooll llooww--UUppss

1. The program does not correctly check proper words that start with an uppercase letter.
Modify the spelling checker so that any word in the dictionary that starts in uppercase must
always start in uppercase. Any other words may start either in upper or lowercase. This
should not affect the display of the lines of text.

2. The program does not correctly handle words that have an apostrophe. Use a tokenizer that
does not split on apostrophes. Instead check the beginning and end of the words for
nonalpha characters and split those off into wordlets of their own. This should not affect the
display of the lines of text.

3. The program does not handle words that have been hyphenated and broken across lines.
Check for this situation and combine the two pieces of the hyphenated word and place it on
the next line.

4. Write a program that will do automatic correction of text. Read a file that contains sets of
words each on a single line. The first word is the correct word and the rest of the words on
that line are common misspellings. Display the corrected text with any changed words in
green.

5. Write a program that will highlight key words in a Java program in blue. Make sure that key
words inside of comments are not highlighted.

6. Use a dictionary to add memoization to the better() method in RecursiveFibonacci. In
memoization, the method checks to see if it has the answer stored in the dictionary. If it does,
it will just return the answer. If not, it will do the computation and then, before returning the
answer, remember it in the dictionary.

167

LLaabb 1122 HHaasshh TTaabbllee IImmpplleemmeennttaatt iioonn

GGooaall
In this lab two different collision resolution schemes will be implemented for a hash table and the
resulting performance will be compared with that of linear hashing.

RReessoouurrcceess
• Chapter 19: Introducing Hashing

• Chapter 20: Hashing as a Dictionary Implementation

• DictionaryInterface.html—API documentation for the DictionaryInterface ADT

• java.sun.com/j2se/1.5.0/docs/api—API documentation for the java.util.Random

class

• Lab12Graphs.pdf—Printable versions of the graphs for this lab

JJaavvaa FFii lleess
• DictionaryInterface.java
• HashedDictionaryOpenAddressingLinear.java
• CheckSearchHashTable.java
• HashPerformance.java

IInnttrroodduucctt iioonn
One of the fastest dictionary implementations is the hash table. As long as the table does not become
too full, the time for adding and finding an element will be O(1). This performance does not come
without some cost. The obvious penalty is that there will be space in the table that is wasted. Another
penalty is that the items in the hash table are not in any particular order. Other dictionary
implementations will keep items in key order, but it is an inherent property of the hash table that
items are not ordered. In fact, as more items are added to the hash table, the size of the table may be
increased to maintain the performance. In this case, the items will be rehashed and will no longer be
in the same locations or order.

GGeenneerraall CCoollll iiss iioonn RReessoolluutt iioonn
To place an item in a hash table of size m, a hash function H(k, m) is applied to the key k. An integer
value between 0 and m–1 will be returned and will be the location of the object. If there is already an
object in that location, a collision has occurred and must be resolved. In a hash table with open
addressing, collisions are resolved by trying other locations until an empty slot is found. One way of
viewing this process is that there is a series of hash functions H0(), H1(), H2(), H3(), … Hi(), …, which
are applied one at a time until a free slot is found.

LLiinneeaarr HHaasshhiinngg
For linear hashing, slots in the hash table are examined one after another. From the view of the
general scheme, the hash functions are

H0(k, m) = H(k, m)
H1(k, m) = (H(k, m)+ 1) mod m
H2(k, m) = (H(k, m) + 2) mod m
…
Hi(k, m) = (H(k, m)+ i) mod m

Lab 12 Hash Table Implementation168

The mod operation is required to keep the values in the range from 0 to m–1. While you could use
these formulas to compute each of the hash locations, usually the previous value is used to compute
the next one.

Hi(k, m) = (Hi–1(k, m) + 1) mod m

Linear hashing has the advantage of a simple computational formula that guarantees all the slots will
be checked. The performance of linear hashing is affected by the creation of clusters of slots that are
filled. Suppose that there are relatively few large clusters. If there is a collision with a slot inside a
cluster, getting outside of the cluster will require a large number of probes. For the best performance,
the free slots should be distributed evenly and large clusters avoided.

PPrree--LLaabb VViissuuaall iizzaattiioonn

DDoouubbllee HHaasshhiinngg
Double hashing is scheme for resolving collisions that uses two hash functions H(k, m) and h(k,m). It
is similar to linear hashing except that instead of changing the index by 1, the value of the second
hash function is used.

From the view of the general scheme, the hash functions are
H0(k, m) = H(k, m)
H1(k, m) = (H(k, m)+ h(k,m)) mod m
H2(k, m) = (H(k, m)+ 2 h(k,m)) mod m
…
Hi(k, m) = (H(k, m)+ i h(k,m)) mod m

As with linear hashing, the hash function can be defined in terms of the previous values.
Hi(k, m) = (Hi-1(k, m)+ h(k,m)) mod m

You must be careful when defining the second hash function.

Suppose that H(k, m) is 12, h(k,m) = 0, and m = 15. What are the locations that will be probed?

H0(k, m) H1(k, m) H2(k, m) H3(k, m) H4(k, m) H5(k, m)

Suppose that H(k, m) is 12, h(k,m) = 4, and m = 15. What are the locations that will be probed?

H0(k, m) H1(k, m) H2(k, m) H3(k, m) H4(k, m) H5(k, m)

If m=15, which values of h(k,m) will visit all of the locations in the table?

h(k,m) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Visits all
locations?

Since you really want to probe the entire table, the value returned by the second hash function has
some limitations. The first condition is that it should not be 0. The second condition is that it should
be relatively prime with respect to m. A common way to guarantee the second condition is to choose
a table size that is a prime.

Lab Manual for Data Structures and Abstractions with Java ™ 169

Suppose that you have access to an integer value c that is based on the key
c=HashCode(k).

The first hash function will be computed as
H(k,m) = c mod m.

Under the assumption that m is a prime, give a formula for computing a second hash function using c.
It should return values in the range of 1 to m–1.

Double hashing can still be affected by clustering (though to a lesser extent than linear hashing).
Every key that has the same value for the second key will probe the table in the same pattern and can
still be affected by clusters.

Show how to modify the following code so that it computes the second hash value and then uses it in
the search.

private int locate(int index, T key)
{

boolean found = false;

while (!found && (hashTable[index] != null))
{

if (hashTable[index].isIn() &&
key.equals(hashTable[index].getKey()))

found = true; // key found
else // follow probe sequence

index = (index + 1) % hashTable.length; //linear probing
} // end while

// Assertion: either key is found or a
// null location is reached
int result = -1;

if (found)
result = index;

return result;
} // end locate

PPeerrffeecctt HHaasshhiinngg
In perfect hashing, associated with each key is a unique random sequence of probe locations. Since
each key has a unique “view” of the table, the locations of the free slots will be randomly spread out
and clustering will be avoided. Even though an approximation to perfect hashing will be
implemented in the lab, it is mainly of theoretical interest because perfect hashing is much easier to
analyze than linear or double hashing.

Let s0(k), s1(k), s2(k), … be a random sequence of values in the range 0 to m–1.

H0(k, m) = s0(k)
H1(k, m) = s1(k)
H2(k, m) = s2(k)
…
Hi(k, m) = si(k)

Lab 12 Hash Table Implementation170

A truly random sequence is not possible, but you can approximate it using pseudo random numbers.
Most algorithmic random number generators use the following simple formula to compute a
sequence of numbers:

Vn+1 = (aVn+c) mod m

Given that a = 3, c = 2, and m = 10, what is the sequence of numbers computed?

V0 V1 V2 V3 V4 V5 V6 V7

3

Is the preceding sequence random? No. It follows a prescribed sequence. If you know one value in
the sequence, you know the next value. Further, notice that the preceding sequence misses some of
the values between 0 and 9. This means it would not be suitable for a random number generator. In
fact, most values for a, c, and m do not result in good pseudorandom number generators, so it is best
not to choose your own values. Instead, either use a professionally designed random number
generator or use one of the published sets of values that have passed a thorough battery of statistical
tests.

Even though the sequence is not random, for good choices of values it can appear random which is
sufficient for our algorithm. In addition, the fact that the values are actually not random is crucial for
the implementation of the perfect hashing algorithm. Each time a value is searched for, you must
follow exactly the same sequence. The first value in the sequence is called the seed. If you initialize
the pseudorandom number generator with a given seed, it will always produce the same sequence of
numbers. This will be the basis for the probe sequence used in perfect hashing.

Show how you can create a new random number generator of the type Random from the package
java.util. Use c = HashCode(k) as the seed for the random number generator.

Show how to modify the following code so that instead of receiving a starting index it gets a random
number generator. To find the index use the method nextInt(int k) method with k as the table
size. This will guarantee a random value in the range of 0 to k–1.

private int locate(int index, T key)
{

boolean found = false;

while (!found && (hashTable[index] != null))
{

if (hashTable[index].isIn() &&
key.equals(hashTable[index].getKey()))

found = true; // key found
else // follow probe sequence

index = (index + 1) % hashTable.length; //linear probing
} // end while

// Assertion: either key is found or a
// null location is reached
int result = -1;

if (found)
result = index;

return result;
} // end locate

Lab Manual for Data Structures and Abstractions with Java ™ 171

CCrreeaatt iinngg RRaannddoomm SSeeaarrcchh KKeeyyss
The average time to locate a value in a hash table is usually given based on whether the value is in
the table or not. To insert a new value in a table, you must probe for a free slot. Thus the time to insert
a new value is basically the same as the time to search for a value that is not in the table. To search for
a value that is in the table, you must follow the same pattern of probes that was used when the value
was inserted. The average will include values that were inserted early and thus require few probes to
locate. This average will be less than the average number of probes required to determine that a value
is not in the table.

To test both kinds of searches, an array of unique random words will be created. The first half of the
array will be inserted into a hash table. The average of finding a value in the first half of the array will
give the average for successful searches and the average over the second half will give the average for
unsuccessful (failure) searches.

To make the test more interesting, random three-syllable pseudowords will be created. It is possible
that a word will be generated twice. To avoid placing such words in the array, you will have to test to
see if the word has been generated before. Using a hash table is a perfect way to do this. As a word is
generated, check the hash table to see if it has been generated before. If not, add it to the array and the
hash table.

Write an algorithm that creates the array of unique random words. You may assume that three arrays
of syllables firstSyl, secondSyl, and thirdSyl have already been created. Further, assume that a
random number generator of type Random from the package java.util has been created. It may
be helpful to use the method nextInt(int k) which will return a random integer from 0 to k–1.

TThhee AAvveerraaggee NNuummbbeerr ooff WWoorrddss GGeenneerraatteedd ttoo GGeett aa UUnniiqquuee WWoorrdd
One thing to consider is the number of words that will be generated before a unique value is found.
As more unique words are generated, it becomes more and more likely that you will randomly
generate a previously created word and have to discard it. This may become too much of a burden.
Let's find out how much of a burden it will be.

To do so, the probability that more than one word will be generated will have to be computed.
Probabilities are real values between 0 and 1. It tells you the likelihood that an event occurs. An event
with a probability of 0.5 has a 50% chance of occurring. An event with a probability of 1 is certain.

Suppose that there are a total of T = 1000 unique words that can be created. (In general, T will be the
sizes of the three syllable arrays multiplied together.) Suppose further that 600 words have already
been generated.

What is the probability that a randomly generated word will be one that has been generated before?

What is the probability that a randomly generated word will not be one that has been generated
before?

To determine the average number of words that will need to be generated in order to get a unique
word, one must consider all the possible events (number of words generated to get the unique word)
along with their probabilities. Multiplying the number of words needed for each event by the
corresponding probability and then adding all the products together gives the average. Let’s create a

Lab 12 Hash Table Implementation172

table with that information (under the assumption that 600 of 1000 unique words have been found
already).

Event Probability Value Product

1 word generated

2 words generated

3 words generated

4 words generated

5 words generated

6 words generated

7 words generated

8 words generated

9 words generated

…

The probability that only one word is generated will be just the probability that the first word
generated is not one that has been generated before. Write that probability in the table.

The probability that two words are generated will be the product of the probability that the first word
had been generated before times the probability that the second word was not generated before.
Write that probability in the table.

The probability that three words are generated will be the product of the probability that the first
word had been generated before times the probability that the second word had been generated
before times the probability that the third word was not generated before. Write that probability in
the table.

There is a pattern here. Using that pattern complete the probabilities column in the table.

Lab Manual for Data Structures and Abstractions with Java ™ 173

The values will just be the number of words generated. Fill in that value column in the table.

For each row in the table multiply the probability by the value and record the result in the product
column.

Add all the products together and record the sum here.

To get the exact answer, you must add up an infinite number of terms. The product is composed of
two parts. One part is getting smaller exponentially and the other is getting larger linearly.
Eventually the exponential part will dominate and the sum will converge. For the given situation,
nine terms will give an answer that is reasonably close to the exact value of 2.5.

As long as no more than 60% of the possible words have been generated, the number of extra words
that get generated will be less than 1.5 and will not be too much of a burden on our algorithm.

The syllable arrays given in the lab each have a size of 15. How many possible words are there?

What is 60% of this total?

To test hash tables with more data values than this, the size of the syllable arrays will need to be
increased.

CCoouunntt iinngg tthhee NNuummbbeerr ooff PPrroobbeess
Consider again the code that locates an item or a free slot in the hash table using linear probing.

private int locate(int index, T key)
{

boolean found = false;

while(!found && (hashTable[index] != null))
{

if (hashTable[index].isIn() &&
key.equals(hashTable[index].getKey()))

found = true; // key found
else // follow probe sequence

index = (index + 1) % hashTable.length //linear probing
} // end while

// Assertion: either key is found or a
// null location is reached
int result = -1;

if (found)
result = index;

return result;
} // end locate

Lab 12 Hash Table Implementation174

Suppose that index is 2 and key is 57. Trace the code and circle the index of any location that is
accessed.

How many locations were circled? (How many probes were made?)

How many times did the body of the loop execute?

Now suppose index is 2 and key is 99. Trace the code again and circle the index of any location that is
accessed.

How many locations were circled? (How many probes were made?)

How many times did the body of the loop execute?

It should be the case that only one of the traces had the same number of loop executions as probes.

Show how to modify the locate() method given previously so that it will add the number of probes
made to a static variable named totalProbes.

DDiirreecctteedd LLaabb WWoorrkk
A hash table class with linear collision resolution has already been implemented in the
HashedDictionaryOpenAddressingLinear class.

You will implement three new classes HashedDictionaryOpenAddressingLinearInstrumented,
HashedDictionaryOpenAddressingDoubleInstrumented, and
HashedDictionaryOpenAddressingPerfectInstrumented

based on that class. They will allow you to gather statistics about the number of probes made to insert
values. The HashPerformance class will generate random arrays of keys, insert the keys in the
various kinds of hash tables, and then display the averages.

Lab Manual for Data Structures and Abstractions with Java ™ 175

IImmpplleemmeenntt iinngg DDoouubbllee HHaasshhiinngg
SStteepp 11.. If you have not done so, look at the implementation of a hash table with linear probing in
HashedDictionaryOpenAddressingLinear.java.
Also take a look at the code in CheckSearchHashTable.java. Compile both the classes
CheckSearchHashTable and HashedDictionaryOpenAddressingLinear. Run the main() method in
CheckSearchHashTable.

Checkpoint: The program will ask you for the number of trials, the number of data values, and a
seed. Enter 1, 1000, and 123, respectively. An array of 1000 random values between 0 and 1000 should
be generated. The first 500 of those values will be inserted into a hash table. The code will check that
searches work correctly. The first 250 values in the array will then be removed from the hash table.
Again searches will be checked. Finally, the last 500 values in the array will be added into the hash
table. Again searches will be checked.

Verify that the code passed each of the three tests.

The first goal is to create the class for double hashing and verify that it works.

SStteepp 22.. Copy HashedDictionaryOpenAddressingLinear.java into a new file
HashedDictionaryOpenAddressingDoubleInstrumented.java.

SStteepp 33.. Create a new private method getSecondHashIndex(Object key), which computes a
second hash function. Refer to the formula created in the Pre-Lab exercises.

SStteepp 44.. Refer to the Pre-Lab exercises and modify the locate() and probe() methods to use
double hashing instead of linear hashing.

SStteepp 55.. Change the code in CheckSearchHashTable so that it creates a new object of type
HashedDictionaryOpenAddressingDoubleInstrumented.

Run the main method in CheckSearchHashTable.

Checkpoint: Use 1, 1000, and 123 for the input values.

Verify that the code passed each of the three tests. If not, debug the code and retest.

The next goal is to create the class for perfect hashing and verify that it works.

IImmpplleemmeenntt iinngg PPeerrffeecctt HHaasshhiinngg
SStteepp 66.. Copy HashedDictionaryOpenAddressingLinear.java into a new file
HashedDictionaryOpenAddressingPerfectInstrumented.java.

SStteepp 77.. Create a new private method getHashGenerator(Object key) which will create the
random number generator used to generate the sequence of probes. Refer to your answer from the
Pre-Lab exercise.

SStteepp 88.. Again, refer to the Pre-Lab exercises and modify the locate() and probe() methods to
use perfect hashing instead of linear hashing. (Remember to change the first argument to be a
random number generator instead of an integer.)

SStteepp 99.. Find all places where the locate() and probe() methods are called and change it so that
getHashGenerator is called invoked instead of getHashIndex. Once you are finished, there should
no longer be any calls to getHashIndex. Remove the getHashIndex method.

SStteepp 1100.. Change the code in CheckSearchHashTable so that it creates a new object of type
HashedDictionaryOpenAddressingPerfectInstrumented.

Run the main method in CheckSearchHashTable.

Checkpoint: Use 1, 1000, and 123 for the input values.

Verify that the code still passes each of the three tests. If not, debug the code and retest.

Lab 12 Hash Table Implementation176

AAddddiinngg SSttaatt iisstt iiccss
SStteepp 1111.. Copy HashedDictionaryOpenAddressingLinear.java into a new file
HashedDictionaryOpenAddressingLinearInstrumented.java.

SStteepp 1122.. Refer to the Pre-Lab exercises and add in code to the locate() and probe() methods
that will count the number of probes.

SStteepp 1133.. Change the code in CheckSearchHashTable so that it creates a new object of type
HashedDictionaryOpenAddressingLinearInstrumented.

Run the main method in CheckSearchHashTable.

Checkpoint: Use 1, 1000, and 123 for the input values.

Verify that the code still passes each of the three tests. If not, debug the code and retest.

SStteepp 1144.. Make similar changes in HashedDictionaryOpenAddressingDoubleInstrumented and
HashedDictionaryOpenAddressingPerfectInstrumented.

SStteepp 1155.. Change the code in CheckSearchHashTable so that it creates a new object of type
HashedDictionaryOpenAddressingDoubleInstrumented. Run the main() method in
CheckSearchHashTable.

Checkpoint: Use 1, 1000, and 123 for the input values.

Verify that the code still passes each of the three tests. If not, debug the code and retest.

SStteepp 1166.. Change the code in CheckSearchHashTable so that it creates a new object of type
HashedDictionaryOpenAddressingPerfectInstrumented. Run the main() method in
CheckSearchHashTable.

Checkpoint: Use 1, 1000, and 123 for the input values.

Verify that the code still passes each of the three tests. If not, debug the code and retest.

GGeenneerraatt iinngg RRaannddoomm KKeeyyss

SStteepp 1177.. Finish the method generateRandomData() in the class HashPerformance. Refer to the
algorithm in the Pre-Lab exercises.

SStteepp 1188.. Compile the code in HashPerformance and run the main() method.

Checkpoint: The code will ask for the number of items to insert, the number of trials, and the
maximum load factor for the hash table. Use 1, 10, and 0.9 for the input values.

If all has gone well, the total number of probes will be 10 and the average will be 1.

Checkpoint: The code will ask for the number of items to insert, the number of trials, and the
maximum load factor for the hash table. Use 10, 10, and 0.9 for the input values.

If all has gone well, the total number of probes will be approximately 105 and the average will be
1.05. Check that the strings in each array are all different.

Checkpoint: The code will ask for the number of items to insert, the number of trials, and the
maximum load factor for the hash table. Use 80, 10, and 0.9 for the input values.

If all has gone well, the total number of probes for linear hashing will be approximately 2200. The
total number of probes for double and perfect hashing should be about 1550. In general, perfect
hashing is expected to take slightly fewer probes than double hashing.

Lab Manual for Data Structures and Abstractions with Java ™ 177

IInnsseerrtt PPeerrffoorrmmaannccee
SStteepp 1199.. Run HashPerformance for different numbers of items to be inserted into the hash table
and record the results in the following two tables. In each case, enter 10 for the number of trials and
0.5 for the maximum load for the hash table.

AAvveerraaggee NNuummbbeerr ooff PPrroobbeess ffoorr tthhee TThhrreeee KKiinnddss ooff HHaasshh TTaabblleess

NUMBER OF ITEMS
INSERTED

AVERAGE PROBES
FOR LINEAR

HASHING

AVERAGE PROBES
FOR DOUBLE

HASHING

AVERAGE PROBES
FOR PERFECT

HASHING
10
20
30
40
50
60
70
80
90

100
110

You should notice a sudden jump in the number of probes needed. The hash table resizing itself and
then rehashing all the items causes this. The average cost for the insertions after a resize will show a
decrease as the cost of the resizing is spread out over the insertions that follow. At approximately
what values did a resizing occur?

AAvveerraaggee NNuummbbeerr ooff PPrroobbeess ffoorr tthhee TThhrreeee KKiinnddss ooff HHaasshh TTaabblleess

NUMBER OF ITEMS
INSERTED

AVERAGE PROBES
FOR LINEAR

HASHING

AVERAGE PROBES
FOR DOUBLE

HASHING

AVERAGE PROBES
FOR PERFECT

HASHING
100
200
300
400
500
600
700
800
900

1000

Lab 12 Hash Table Implementation178

SStteepp 2200.. Plot the average number of probes for each of the three kinds of hash tables on the
following two graphs.

Lab Manual for Data Structures and Abstractions with Java ™ 179

IInnsseerrtt iioonn PPeerrffoorrmmaannccee vveerrssuuss IInniitt iiaall TTaabbllee SSiizzee
The cost of resizing the table is a hidden cost that gets spread out over all of the insertions. If you can
accurately predict the number of data values to be inserted, this hidden cost can be avoided by
setting the initial size of the table to be larger.

SStteepp 2211.. In the class HashPerformance, add code that will query the user for the initial size of the
hash table. It should be a positive integer value.

SStteepp 2222.. Modify the invocation of the constructor for each of the three kinds of hash tables to take
as an argument the value that was read in.

SStteepp 2233.. Run HashPerformance for different initial sizes of the hash table and record the results.
In each case, enter 1000 for the number of items to insert, 10 for the number of trials, and 0.5 for the
maximum load.

AAvveerraaggee NNuummbbeerr ooff PPrroobbeess wwiitthh RReessppeecctt ttoo tthhee IInniittiiaall TTaabbllee SSiizzee

INITIAL TABLE SIZE AVERAGE PROBES
FOR LINEAR

HASHING

AVERAGE PROBES
FOR DOUBLE

HASHING

AVERAGE PROBES
FOR PERFECT

HASHING
50

100
250
500
1000
2000

In each of the cases, the final size of the hash table will be about 2000.

SStteepp 2244.. Plot the data on the following graph.

Lab 12 Hash Table Implementation180

SSeeaarrcchh PPeerrffoorrmmaannccee vveerrssuuss LLooaadd FFaaccttoorr
The cost of searching for an item in a hash table is not affected by resizing. Code will be added to
distinguish between the number of probes required to search for items in the table (successful search)
and items that are not in the table (failure or unsuccessful search).

SStteepp 2255.. In the class HashPerformance, add a method insertHalfData() that is based on
insertAllData(). It will insert just the first half of the array into the hash table.

SStteepp 2266.. In the class HashPerformance, add the methods searchFirstHalf() and
searchSecondHalf() that search for each of the keys in the first and second half of the array,
respectively. Use the method contains() to determine if the value is in the hash table.

SStteepp 2277.. Change the call to generateRandomData() so that it uses 2*insertCount instead of
insertCount.

SStteepp 2288.. Change the code in the main() of HashPerformance so that it calls insertHalfData()
instead of insertAllData().

SStteepp 2299.. After the code that records the number of probes for the insertions, add code that calls
resetTotalProbes, performs searchFirstHalf, and then finally records the number of probes
needed for the successful searches. Do this for each of the three kinds of hash tables.

SStteepp 3300.. After that code, add code that calls resetTotalProbes, performs searchSecondHalf,
and finally records the number of probes needed for the unsuccessful searches. Do this for each of the
three kinds of hash tables.

SStteepp 3311.. Compile and run HashPerformance.

Checkpoint: Enter 100 for the number of values to insert, 1000 for the number of trials, 0.75 for the
maximum load factor, and 75 for the initial table size.

The values should be close (typically a difference between –0.1 to 0.1) to the ones listed in the
following table. If the values are close but not within the desired range, run the code again with the
same values and recheck the results. If the values are still not close, carefully examine the code for
errors.

Average Number of
Probes to Insert the

Data

Average Number of
Probes for Successful

Searches

Average Number of
Probes for

Unsuccessful Searches
Linear Hashing 3.1 1.7 3.6
Double Hashing 2.6 1.5 2.6
Perfect Hashing 2.6 1.5 2.6

Lab Manual for Data Structures and Abstractions with Java ™ 181

SStteepp 3322.. Compile and run HashPerformance for different load factors. The load factor is the
number of data items in the table divided by the table size. The initial table size and maximum load
factor will be chosen so that the table does not resize and the desired load factor is achieved once all
the values have been inserted into the hash table. In each case, enter 10 for the number of trials, 0.99
for the maximum load for the hash table, and 1000 for the initial table size.

AAvveerraaggee NNuummbbeerr ooff PPrroobbeess ffoorr SSuucccceessssffuull SSeeaarrcchheess

LOAD FACTOR
(N = NUMBER OF

DATA VALUES TO
INSERT)

AVERAGE PROBES
FOR LINEAR

HASHING

AVERAGE PROBES
FOR DOUBLE

HASHING

AVERAGE PROBES
FOR PERFECT

HASHING

0.30 (n=300)
0.40 (n=400)
0.50 (n=500)
0.60 (n=600)
0.70 (n=700)
0.75 (n=750)
0.80 (n=800)
0.85 (n=850)
0.90 (n=900)
0.95 (n=950)

AAvveerraaggee NNuummbbeerr ooff PPrroobbeess ffoorr FFaaiilleedd SSeeaarrcchheess

LOAD FACTOR AVERAGE PROBES
FOR LINEAR

HASHING

AVERAGE PROBES
FOR DOUBLE

HASHING

AVERAGE PROBES
FOR PERFECT

HASHING
0.30 (n=300)
0.40 (n=400)
0.50 (n=500)
0.60 (n=600)
0.70 (n=700)
0.75 (n=750)
0.80 (n=800)
0.85 (n=850)
0.90 (n=900)
0.95 (n=950)

Lab 12 Hash Table Implementation182

SStteepp 3333.. Plot the data on the following graphs.

Lab Manual for Data Structures and Abstractions with Java ™ 183

PPoosstt--LLaabb FFooll llooww--UUppss

1. Add two methods startSearch() and endSearch() to the instrumented hash table classes.
The method startSearch() will be called at the beginning of locate() and probe(). The
method endSearch() will be called at the end of locate() and probe(). Use these
methods to compute the maximum and minimum numbers of probes needed by locate()
and probe().

2. Use the methods added in the pervious exercise to compute the standard deviation of the
number of probes needed.

3. Change the rehash() method so that it increases the size of the hash table by a constant
value (set it to the initial size of the hash table.) Recalculate the insertion performance of the
three kinds of hash tables and plot.

4. Change the rehash() method so that it increases the size of the hash table by a constant
factor (set it to 20%). Recalculate the insertion performance of the three kinds of hash tables
and plot.

5. Create a new class that implements quadratic hashing. Add code to count the number of
probes. Compute the performance and plot.

6. Create code that will test the performance of a hash table when there are insertions and
deletions. Start by adding N values to the table. Then do a sequence of K operations. For each
operation, randomly choose to add or remove a value with a probability of 0.5. Print the
number of probes needed for the K operations. Once the K operations are finished, compute
the performance of the resulting table for successful and unsuccessful searches. Plot the
results for K = 100, 1000, and 10000 with values of N that are 200, 400, 600, 800, 1000.

7. Add code to the hash table classes that will create a smaller table and rehash. Add code that
keeps track of the slots that are empty but marked as removed. Compute a load factor that is
based on the number of filled slots plus the number of slots marked as removed. If this value
ever gets larger than the maximum load factor, rehash the table.

Insert N items into the table initially. Compute the performance with and without this
rehashing when adding and removing K blocks of M randomly chosen items.

8. Each random word that was created can be represented as a triplet of three numbers. Create
a method that given a triplet will create the next one in a lexicographic order. Given a
random triplet as a starting point, use this method to generate words without any repetition.
To make the words look more random, you can skip over K triplets and as long as K is
relatively prime with respect to the total number of possible triplets, every triplet will be
visited before there is a repetition. (This is similar to the search pattern that double hashing
does.)

9. If perfect hashing into a table with load factor α = N / M has a probability of 1 − α of finding
an empty slot, compute the average number of probes needed to find an empty slot. The
computation is similar to the one done in the Pre-Lab to determine the average number of
random words you must generate to get a unique word when duplicates are to be discarded.
This computation can be done exactly.

185

LLaabb 1133 SSttaacckk CCll iieenntt

GGooaall
In this lab you will use a stack to create an iterative version of quick sort. Then an animated program
that will be completed that searches for a target square in a maze.

RReessoouurrcceess
• Chapter 12: Faster Sorting Methods

• Chapter 21: Stacks

• java.sun.com/j2se/1.5.0/docs/api—API documentation for the Java Stack class

• Maze.html—API documentation for the class Maze, which contains all the maze data

• Maze.jar—The working application

• Lab13Graphs.pdf—Printable versions of the graphs for this lab

JJaavvaa FFii lleess
Files in Directory Sorts:
• IterativeFibonacci.java
• TestFibonacci.java
• SortArray.java
• CheckSort.java

• TimeSort.java

Files in Directory Maze:
• MazeApplication.java
• MazeActionThread.java
• Maze.java
There are other files used to animate the application. For a full description, see Appendix A.

IInnppuutt FFii lleess
• maze1.java

• maze2.java
• maze3.java
• maze4.java
• maze5.java

• maze6.java

IInnttrroodduucctt iioonn
In computer science, one of the important basic structures is the stack. In its simplest form it has three
operations: push, pop, and empty. Push places a value on the top of the stack. Pop removes the top
value from the stack. Empty is a test to determine if the stack has any values in it. Some specifications
have a fourth operation called peek (or top). Peek will return the top value on the stack but leaves the
number of items unchanged. Strictly speaking, peek is unnecessary because a pop followed by a push
will mimic its operation.

In theoretical computer science, one of the problems of interest is recognizing words in a language. In
this context, a language is a set of words that follow some pattern. For example, one language is all
the words from the alphabet {0, 1} that have equal numbers of zeros and ones. The word 001011 is in
the language, but the word 00111 is not.

Lab 13 Stack Client186

There are a number of primitive models of computation that have different abilities. One kind of
model is a machine called a pushdown automata (PDA). It has a finite control (program) and a single
stack that it can use for memory.

While fairly powerful, a PDA does have some surprising limits. For example, while a PDA can
recognize words of the form 0n1 n, it cannot recognize 0n 1n 0n. Modern computer languages are often
recursively defined by a grammar, which can be recognized by a PDA.

There is a strong relation between stacks and recursion. The desire to do recursive computations
easily has impacted computer hardware. The architecture of modern computers has a built-in stack.
A method call will place the return address on the stack. Variables for the method will be stored on
the stack as well.

CCoonnvveerrtt iinngg RReeccuurrssiioonn ttoo II tteerraatt iioonn
Recall the code that computes the Fibonacci sequence (from Lab 6). A couple of temporary variables
that are often generated by the compiler are made explicit in the following version.

int F(int n)
{

int temp1;
int temp2;
int result;

if(n <= 0)
result = 0;

else if (n == 1)
result = 1;

else
{

temp1 = F(n-1);
temp2 = F(n-2);
result = temp1 + temp2;

}
return result;

}

Lab Manual for Data Structures and Abstractions with Java ™ 187

Look at the pattern of recursive calls for the computation of F(3).

Each recursive call of F() will have its own copies of the variables n, temp1, temp2, and result. Let's
trace the operation of the code and keep frames for each of the sets of variables off to the side.

Lab 13 Stack Client188

The if statement is evaluated and the next recursive call is made. While the new version of F() is
executing, the variables for F(3) must be kept safe, but they do not need to be accessed.

Again, the if statement is evaluated and the next recursive call is made. While the new version of
F() is executing, the variables for F(3) and F(2) must be kept safe, but they do not need to be
accessed.

This time the base case is reached. The computation sets the value of result in frame 3 and then F(1)
returns. The returned value is stored in temp1 of frame 2.

Lab Manual for Data Structures and Abstractions with Java ™ 189

The variables in frame 3 are no longer needed. It will be disposed of.

The computation for F(2) continues. It makes a recursive call to F(0).

Lab 13 Stack Client190

Jumping ahead a bit, F(0) will finish and frame 4 can be released.

Now that F(2) has both its values, it will compute result and then return. Frame 2 will be disposed
now.

It is easy to see that the frames can be stored on a stack. Each time a call is made, the new frame is
pushed on the stack. Each time a return is made, a frame is popped off the top of the stack. At any
time, only the top frame on the stack will be accessed.

This all happens automatically for the recursive program. But there is another choice. The
computation can be done iteratively using an explicit stack.

On the stack will be stored the same frames, but there is one extra item that is needed. When the call
to F(0) returned, how did the computation know where to put the value? There was a return address

Lab Manual for Data Structures and Abstractions with Java ™ 191

that was also stored on the stack that gives the correct place to resume the computation. That will
need to be coded in a variable. Each recursive call separates the code into sections. Let's call the
sections START, USE1, and USE2. At each iterative step, the top item on the stack is removed and the
appropriate computation is done. When a recursive call is encountered, two frames are placed on the
stack. The first is the frame for the current computation with the section that will be performed next.
The second is the frame for the recursive call. When a frame finishes, it puts its result into a shared
variable *result* that is used to hold the return value.

The basic algorithm is as follows:
1. Put the first frame on the stack.
2. While the stack is not empty

a. Take the top frame from the stack.
b. Do the computation indicated by the section.
c. If a recursive call is needed.

i. Put the current frame on the stack with the status set to indicate the state
of the computation.

ii. Put a start frame on the stack for the recursive call
d. If the computation is finished, place the returned value in *result*.

3. Return *result*.

Lab 13 Stack Client192

The iteration continues until there are no more frames on the stack. The first iterations for Fibonacci are

The code is a bit intimidating, but it works. It is in IterativeFibonacci.java in the lab folder, so
you can look at it and verify that it is correct. One of the advantages of using the recursion provided
by Java is an economy of expression. One might ask: “Why do it iteratively then?” One answer is that
doing recursive method calls may be more expensive than iteration with the stack. Unfortunately,
this iterative version of Fibonacci mimics the doubly recursive method, so it will have the same bad
exponential performance. It may be slightly faster than the recursive version, but it is still horrible.

PPrree--LLaabb VViissuuaall iizzaattiioonn

QQuuiicckk SSoorrtt
The technique described previously can be applied to quick sort.

Look at the code for version3QuickSort() in SortArray.

CCaannddiiddaatteess ttoo bbee ssttoorreedd oonn tthhee ssttaacckk::

What are the parameters of the method?

What are the local variables of the method?

Does it matter which order the recursive sorts are performed in?

Lab Manual for Data Structures and Abstractions with Java ™ 193

Quick sort is a little easier to convert than Fibonacci from above. The reason is that Fibonacci requires
knowledge of which recursive call was made so it can correctly perform the combine logic. Quick sort
basically has no combine logic. Once it has finished the split logic, it can schedule both recursive calls.

Does the array need to be in the frame or can there be a single variable for the array shared by all the
calls?

Is the local variable pivotIndex required after the recursive calls are scheduled? (If not, it does not
need to be in the frame.)

At this point, the only variables that seem to be required in the frame are first and last.

Lab 13 Stack Client194

Give an algorithm for an iterative version of quick sort. (Remember, no switch statement is needed.
Just take in a chunk to process, process it, and (if needed) put two new chunks out.)

Trace its operation on the array:

Lab Manual for Data Structures and Abstractions with Java ™ 195

MMaazzee RReeccuurrssiioonn
Suppose there is a maze. Robo-rat is placed in the maze. A battery is placed in a different location in
the maze. Robo-rat needs to search to find the battery. In the following picture, the starting location
of Robo-rat is the star and the battery is the double circle.

Where can Robo-rat go from here? He has four choices for direction: north, south, east, and west.
Suppose Robo-rat chooses to go west.

Lab 13 Stack Client196

Where does Robo-rat go now? Does anything prevent him from going back east? Clearly, he needs to
mark the positions that he visits so he doesn’t visit them again. But there were four directions he
could have chosen at the first step; how can he get back to them?

Recursion is useful here. To search the maze, Robo-rat can recursively search each of the four
directions. If he is unsuccessful in one direction, eventually that recursive call will return. The next
recursive call is made and off Robo-rat goes again searching the next direction. The backtracking that
is needed is accomplished naturally by the recursion.

Give a recursive design for searching in a maze. Assume that there are primitive operations that
allow you to

• mark the square Robo-rat is in,

• check to see if a neighbor square is marked,

• check to see if a neighbor square has a wall,

• move Robo-rat to a neighbor square,

• and backtrack Robo-rat to a square he has previously visited.

At the end, Robo-rat should be in the same square as the battery (if a path to the battery exists).

IIddeenntt iiffyy tthhee pprroobblleemm::

IIddeenntt iiffyy tthhee ssmmaall lleerr pprroobblleemmss::

IIddeenntt iiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::

IIddeenntt iiffyy tthhee bbaassee ccaasseess::

CCoommppoossee tthhee rreeccuurrss iivvee ddeeffiinniittiioonn::

Show the order that the squares are visited in the preceding maze.

Lab Manual for Data Structures and Abstractions with Java ™ 197

II tteerraatt iivvee MMaazzee SSeeaarrcchh
The iterative maze search will be similar in many respects to the iterative quick sort.

Does the order that directions are searched matter?

Is the composition of the subproblems nontrivial?

As with quick sort, the iterative version does not need to keep a status. It just needs to keep the next
location to check on the stack.

Give an iterative algorithm for maze search that uses a stack. The same primitives are available as
before.

Lab 13 Stack Client198

Trace the algorithm on the following maze. Mark the order that squares are visited.

For the lab, one slight modification will be made. Anytime a square is placed on the stack as a
potential direction, it will be marked as scheduled. Robo-rat will not visit a scheduled square until he
finally takes it off of the stack.

With this modification, trace the algorithm on the following maze. Again, mark the order that squares
are visited.

Lab Manual for Data Structures and Abstractions with Java ™ 199

DDiirreecctteedd LLaabb WWoorrkk

CCrreeaatt iinngg IItteerraatt iivvee QQuuiicckk SSoorrtt
The basic and advanced sorts have been implemented in the SortArray class. The class CheckSort
will generate some arrays, call a sorting routine, and check that it correctly sorts the values. The class
TimeSort will be used to time the sorts.

SStteepp 11.. Create a new class named QSFrame. (Don’t create it inside of SortArray. This will avoid
some problems with the static sorting methods.) It will be the frame class that will be used for quick
sort. Create any needed methods.

SStteepp 22.. Make a copy of the public method version3QuickSort in SortArray.

SStteepp 33.. Rename it to iterativeQuickSort().

SStteepp 44.. Remove the call to the private recursive version3QuickSort(). It will be replaced with
the iterative quick sort code. Do not remove the call to insertion sort.

SStteepp 55.. Refer to the the Pre-Lab exercises and implement the code for the iterative simulation of
recursive quick sort.

Checkpoint: Run CheckSort with an array size of 500. Verify that iterative quick sort works
correctly.

Lab 13 Stack Client200

SStteepp 66.. Change the value of the constant used to compute quickSort100Ticks to the value you
found in Lab 9 (Advanced Sorts).

SStteepp 77.. Fill in the following table. Use the number of trials you used in the advanced sorting lab.
Use 10 for the seed.

RATIO FOR
BASIC

QUICKSORT

RATIO FOR
ITERATIVE

QUICKSORT
Size=100
Size=200
Size=300
Size=400
Size=500
Size=600
Size=700
Size=800
Size=900
Size=1000

SStteepp 88.. Plot the points for the ratios for quick sort and iterative quick sort on the following
graph.

Lab Manual for Data Structures and Abstractions with Java ™ 201

AAnniimmaatteedd MMaazzee
All of the classes needed for the MazeApplication exist. This application is based on the
AnimatedApplication framework. If you have not already, you should look at the description of it
in Appendix A. The class that you will be working on is MazeActionThread. There is one other class
that is specific to this application that you will need to work with. This class is Maze. Take a look at
them now, if you have not done so already.

SStteepp 11.. Move the files maze1.txt through maze6.txt to the directory that your particular
implementation of Java reads from and writes to.

SStteepp 22.. Compile the class MazeApplication. Run the main method in MazeApplication.

Checkpoint: If all has gone well, you should get a graphical user interface with step controls along the
top and application setup controls on the bottom. There should be one text field where you can enter
the name of a file containing the maze data. Type maze2.txt for the text file and then press enter.
There should be a message indicating that it is now the maze input file. If not, check to make sure that
you copied the file to the correct place. The application will read the maze. It should correspond,
except for the start and goal, to the first maze from the Pre-Lab. The start should be at location (0,0).
The goal should be at location (1,1). Enter 2 and 5 for the start. Press enter. The position of the start
star should change. Enter 0 and 3 for the goal. Press enter. The position of the goal circles should
change. Now the picture should match the Pre-Lab. Step twice. The application should finish.

SStteepp 33.. Create a new class named MazeFrame. Make it a private inner class in
MazeActionThread. It will be the frame class that will be used to simulate the recursive search of the
maze. Create any needed methods for the MazeFrame class.

SStteepp 44.. Refer to the exercises from the Pre-Lab and implement the code for the method
searchMaze() in MazeActionThread. Don’t forget to visit the goal when you find it.

SStteepp 55.. Code to create steps in the animation need to be added. Put the following line

immediately after every call to visitSquare() or scheduleSquare().

animationPause();

SStteepp 66.. Call searchMaze() in the method executeApplication(). Set the variable goalFound
with the value returned by the call.

Final Checkpoint: Run MazeApplication. Set up the application with maze2.txt. Use a start of (2,5).
Use a goal of (0,3).

Step the application twice. A red dot should appear in the start square indicating that it was the most
recently visited.

Step the application once more. A cyan circle should appear in one of the neighbors. This is a
scheduled square. It should be the first one pushed on the stack.

Step the application twice more. The other two open squares next to the start should be filled with
cyan circles, indicating that they have been scheduled.

Step the application once more. The last cyan dot should turn red as it is visited. The start will turn
blue, which is the indication of a visited square that is not most recent.

Continue stepping the application. Eventually, the application should end with the red dot filling the
center of the goal and a message will appear that it was found.

Run MazeApplication. Set up the application with maze2.txt. Use a start of (0,3). Use a goal of (0,7).

This time the application should search every square except goal. It will finish and the message
should not appear.

Try the other mazes. Create ones of your own. Enjoy!

Lab 13 Stack Client202

PPoosstt--LLaabb FFooll llooww--UUppss

1. Develop and implement an iterative version of merge sort.

2. Suppose one wanted to keep the size of the stack as small as possible in the iterative version
of quick sort. By comparing the sizes of the subranges, decide which half will be better for
keeping the stack small. Implement this and print out the size of the stack. Compare this with
the original version.

3. Modify the Maze application so it displays the path from the starting point to the current
location in blue.

203

LLaabb 1144 QQuueeuuee IImmpplleemmeennttaatt iioonn aanndd CClliieenntt

GGooaall
In this lab you will work with queues. You will implement an event queue and then use it along with
another queue in a simulation of customers waiting in a line at a bank.

RReessoouurrcceess
• Chapter 23: Queue, Deque, and Priority Queues

• Chapter 24: Queue, Deque, and Priority Queue Implementations

• QueueInterface.html—API documentation for the queue ADT

• PriorityQueueInterface.html—API documentation for the priority queue ADT

• SimulationEventQueueInterface.html—API documentation for the event queue ADT

• SimulationEventInterface.html—API documentation for the events on the event queue
ADT

• Customer.html—API documentation for a class representing a customer in a waiting line

• BankLine.html—API documentation for a class representing a line of customers in a bank

• Report.html—API documentation for a class representing a class that will display a report
for the simulation

• VectorQueue.java—A sample implementation of Queue (in QueuePackage)
• Bank.jar—The final animated application

• Lab14Graphs.pdf—Printable versions of the graphs for this lab

JJaavvaa FFii lleess
In directory Bank Simulation

• Customer.java
• CustomerGenerator.java
• Teller.java

• BankLine.java
• Report.java
• BankApplication.java
• BankActionThread.java

• There are other files used to animate the application. For a full description see Appendix A.

In directory QueuePackage
• QueueInterface.java

• PriorityQueueInterface.java
• SimulationEventInterface.java
• SimulationEvent.java
• SimulationEventQueueInterface.java

IInnttrroodduucctt iioonn
A queue is a data structure that allows you to add items at the end and remove items from the front.
It is a natural representation of a waiting line. A priority queue changes the add method. Instead of
always adding at the end, it will insert the item into the queue according to a priority. The higher the
priority, the closer to the front the item will be.

EEvveenntt--DDrriivveenn SSiimmuullaatt iioonnss
One way of doing a simulation is to keep a list of all the events that have been scheduled to occur in
the future. At each turn in the simulation, the event with the earliest time is removed from the list
and processed. All of the events will be associated with an object. Processing the event will change

Lab 14 Queue Implementation and Client204

the state of the object and may schedule new events to be processed at a later time. When designing a
simulation, it will be important to have an idea of how the sequence of events flows in the system.

For example, consider a traffic light simulation where the light changes color every minute. What are
the possible events in the simulation?

• The light turns green.

• The light turns red.

• The light turns yellow.

• A car arrives at the intersection.

• A car leaves the intersection.

Consider the traffic light first. What happens when the light turns red?

EEvveenntt:: LLiigghhtt ttuurrnnss rreedd
SSttaattee cchhaannggee: The color of the light becomes red.
OOppeerraatt iioonnss//EEvveennttss ttoo sscchheedduullee: The light turns green in 60 seconds in the future.

Similarly, for the next two events,

EEvveenntt:: LLiigghhtt ttuurrnnss ggrreeeenn
SSttaattee cchhaannggee: The color of the light becomes green.
OOppeerraatt iioonnss//EEvveennttss ttoo sscchheedduullee: The light turns yellow in 50 seconds in the future.

EEvveenntt:: LLiigghhtt ttuurrnnss yyeell llooww
SSttaattee cchhaannggee: The color of the light becomes yellow.
OOppeerraatt iioonnss//EEvveennttss ttoo sscchheedduullee: The light turns red in 10 seconds in the future.

Pictorially, the events for the light are

Now consider the events for the car. What happens when the car arrives at the light? It must check
the color of the light to see if it can go through the intersection. If the light is red, the car will have to
stop and wait. Can the car schedule when it will leave the intersection? No. Unlike with the light, the
time that the car leaves has yet to be determined. There must be some place where the car will wait
until it can be notified that it may continue. Once it receives notification, then it can schedule when it
will leave the intersection.

Where will the car wait? The natural choice is a queue associated with the traffic light. What happens
when the car arrives and the light is green? Can the car just go through the intersection? If there are
cars waiting, a crash has just happened.

Lab Manual for Data Structures and Abstractions with Java ™ 205

EEvveenntt:: CCaarr aarrrr iivveess aatt tthhee iinntteerrsseecctt iioonn
SSttaattee cchhaannggee: None for now (arrival time could be recorded though).
OOppeerraatt iioonnss//EEvveennttss ttoo sscchheedduullee: If the light is green and there are no cars waiting, schedule
leaving the intersection 3 seconds in the future. Otherwise, put the car on the queue.

The question now is, “How do cars waiting at the light get going again?” Some event must trigger
them. In this case, it will be when the light turns green. The design for that event must change.

EEvveenntt:: LLiigghhtt ttuurrnnss ggrreeeenn ((VVeerrss iioonn 22))
SSttaattee cchhaannggee: The color of the light beomes green.
OOppeerraatt iioonnss//EEvveennttss ttoo sscchheedduullee: The light turns yellow in 50 seconds. The light notifies the
first car waiting in the queue that it can go now.

This takes care of the first car in the line, but what about the others? Each car in turn will notify the
one behind it. This raises another question, “Can all the cars make it through the light in a single
turn?” Sometimes the answer will be no. The time that the light is green will play a role. Clearly, all
the cars cannot start at the same time but must be staggered. This indicates that the event queue must
play a role. There must be another event.

EEvveenntt:: WWaaiittiinngg ccaarr cchheecckkss iinntteerrsseecctt iioonn
SSttaattee cchhaannggee: None.
OOppeerraatt iioonnss//EEvveennttss ttoo sscchheedduullee: If the light is red or yellow, do nothing. Otherwise, schedule
leave intersection 3 seconds in the future. Also, it will remove itself from the queue and notify the
next car that it can check the intersection in 1 second.

Lab 14 Queue Implementation and Client206

There is only one event left.

EEvveenntt:: CCaarr lleeaavveess iinntteerrsseeccttiioonn
SSttaattee cchhaannggee: None for now (the time the car leaves the intersection could be recorded).
OOppeerraatt iioonnss//EEvveennttss ttoo sscchheedduullee: None.

One question is how do all the car arrival events get scheduled. One possibility is that they are all
generated and placed on the event queue before the simulation starts. Another possibility is that there
is a car generator object with a single event of its own.

EEvveenntt:: GGeenneerraattee CCaarr
SSttaattee cchhaannggee: None.
OOppeerraatt iioonnss//EEvveennttss ttoo sscchheedduullee: Create a car and schedule it to enter the intersection now.
Generate delta, a random time interval. Schedule a generate car event at time delta in the future.

This is similar to the operation of the traffic light except that the events occur at a random interval
instead of a fixed one.

EEvveennttss
Essentially, an event encapsulates a time and what to do at that time. They will support the interface
in SimulationEventInterface. The four methods that must be supported are:

ggeettTTiimmee(()):: Get the time for the event.
ggeettDDeessccrr iipptt iioonn(()):: Get a string describing the event.
ggeettPPoossttAAccttiioonnRReeppoorrtt(()):: Get a string describing what the event did.
pprroocceessss(()):: Do the actions required of the event.

The time and description of the event will be set when the event is created. The process method will
be specialized for each particular event class. The last thing that process should do is to set a string,
which the getPostActionReport method can return. Strictly speaking, the two methods that return
the strings are not needed for the simulation, but they are useful in the animated application. The
only really interesting method is process().

To make it easier to create new events, the abstract class SimulationEvent has been created. It
defines all of the methods, except for process, which is abstract. All a subclass needs to do is to
have a constructor and a process method. An example of such a class is the inner class
GenerateCustomerEvent in the CustomerGenerator class. Making the event class an inner class
eases the coding marginally. The inner class will have access to all of the private variables of the
class it is inside.

PPrree--LLaabb VViissuuaall iizzaattiioonn

TThhee SSiimmuullaatt iioonn EEvveenntt QQuueeuuee
The event queue is very similar to a priority queue. It has two major differences. The first difference is
that the event queue acts as a timekeeper for the simulation. Every time an event is removed from the
event queue, the simulation time moves forward to be the same as the time for the event that was just
removed.

The second difference is that events that are before the current time of the event queue will not be
added. If that were allowed, the arrow of time would not always go in the forward direction.

The major operation is the add() method. Suppose the following event is received by the add
method.

Lab Manual for Data Structures and Abstractions with Java ™ 207

In each of the following event queues, show where it would be added.

Lab 14 Queue Implementation and Client208

Give an algorithm for inserting an event into an event queue.

Show the operation of the algorithm on the previous event queue examples.

UUssiinngg aann EEvveenntt QQuueeuuee iinn aa SSiimmuullaatt iioonn
Suppose that the event queue is working. Some code is needed to drive the simulation forward. (It is
called an event loop.)

When should the simulation stop?

Lab Manual for Data Structures and Abstractions with Java ™ 209

At each step in the simulation, what must happen?

Given an algorithm for the event loop.

TThhee BBaannkk LLiinnee SSiimmuullaatt iioonn
In the lab, an event simulation will be created. It will simulate customers waiting to be served at a
bank by tellers. Beside the animation and event classes, there will be five main classes that implement
the bank simulation. Four of them will have associated animation displays. Pictorially, their relations
are

A customer in this simulation has very few responsibilities. The major responsibility of this class is to
be able to draw a graphic representation of itself. When the customer is created, it will be given a
name and the current time. At some time in the future it will be notified (by the teller) that it has been
serviced. Once that has happened, it has the responsibility to be able to compute the time that it
waited. The time it starts waiting and the time it is serviced will both be displayed. Consult
Customer.html for names of the methods it implements.

The BankLine class is nearly as free of responsibilities as Customer. Besides its responsibilities as a
queue, it has the additional responsibility of being able to draw itself.

The Report class has the responsibility for presenting the results of the simulation. It will produce
two averages. The first is the average time that the customers currently in the line have waited. The
second is the average time that the serviced customers waited. To accomplish the first task, the
Report class will have access to the bank line. It will iterate over the customers in the line, requesting
the time they started waiting. It will use these values to compute the average time waited. To satisfy

Lab 14 Queue Implementation and Client210

the second requirement, it will keep a list of customers that have finished. It will iterate over them,
requesting the time they waited. This places a requirement on Teller to give the customer to the
Report object when the teller removes the customer from the bank line. The last requirement of
Report is to display the current time of the simulation. This means that the simulation loop will need
to inform the Report object of the current time after every step.

The CustomerGenerator class is one of the two classes that interact with the event queue. It has an
event for customer generation.

EEvveenntt:: GGeenneerraattee CCuussttoommeerr
SSttaattee cchhaannggee:: Customer name/count is updated.
OOppeerraatt iioonnss//EEvveennttss ttoo sscchheedduullee:: Create a new customer. Add the customer to the bank line.
Schedule a generate customer event at a random time in the future.

The Teller class is the other class that interacts with the event queue. It will check the line for a
customer to service.

What will happen if there is a customer in line?

What will happen if there isn’t a customer in line?

Similar to generating a customer, the amount of time required to handle the customer will be
random. The maximum time will be one of the parameters of the constructor. The other time used by
the teller is the period between checking the line. Assuming that the tellers are very vigilant, the line
will be checked every second.

Complete the event specification. (Teller has a method serve(), which encapsulates its
responsibilities for serving the customer.)

EEvveenntt:: CChheecckk BBaannkk LLiinnee ffoorr aa CCuussttoommeerr

SSttaattee cchhaannggee::

OOppeerraatt iioonnss//EEvveennttss ttoo sscchheedduullee::

Give an algorithm for the process method of the event.

Lab Manual for Data Structures and Abstractions with Java ™ 211

DDiirreecctteedd LLaabb WWoorrkk

IImmpplleemmeenntt iinngg tthhee EEvveenntt QQuueeuuee
All but two of the classes needed in today’s lab exist. The first class that will be worked on is the
SimulationEventQueue.

SStteepp 11.. In the QueuePackage, create a new class named SimulationEventQueue.

SStteepp 22.. In the class declaration, make it implement SimulationEventQueueInterface.

SStteepp 33.. Create method stubs for each of the methods in the interface.

Checkpoint: The class should compile now.

SStteepp 44.. Create a private variable to store the current simulation time.

SStteepp 55.. Create a private variable to store the contents of the queue.

SStteepp 66.. Implement all of the methods except for add(). You may find the class VectorQueue
helpful.

SStteepp 77.. In the remove() method, add code to change the current time of the event queue.

SStteepp 88.. Refer to the Pre-Lab exercises and implement the add() method.

Checkpoint: The class should compile.

TThhee BBaannkk LLiinnee AAnniimmaatt iioonn
Checkpoint: The bank application should run. At the very start of the set up phase init() will be
called. The customer generator in its constructor puts its initial event on the event queue. That should
show up as the next event. No customers should be in the line. Fred should be waiting patiently for
customers to show up. The report should indicate that there are no customers waiting or served. The
simulation time is 0.0.

At this point, it would be nice to see the event queue in operation. Code to drive the simulation will
be added into the BankActionThread.

CCrreeaatt iinngg tthhee EEvveenntt LLoooopp
SStteepp 99.. In the method executeApplication() in BankActionThread, add code that will
repeatedly take events from the event queue and process them. Refer to the Pre-Lab exercises.

The display for the simulation has a few requirements for what happens in the event loop.

SStteepp 1100.. Inside the loop after the event has been processed, get the post action report from the
event and use it to set lastEventReport.

SStteepp 1111.. If there is a next event, get the description and use it to set nextEventAction.

SStteepp 1122.. Update the time for the report.

SStteepp 1133.. The last code in the loop should be the line that will pause the animation.

animationPause();

Checkpoint: Compile and run the application. Press go. Customers should be generated and placed
one at a time into the line. You should see them. Unfortunately, Fred is busy with his coffee. The
simulation should stop once it hits 1000.

Lab 14 Queue Implementation and Client212

CCoommpplleett iinngg tthhee TTeelllleerr EEvveenntt
It is time for Fred to get to work. The process method for CheckForCustomerEvent inside the Teller
class needs to be completed.

SStteepp 1144.. Refer to the Pre-Lab exercises and complete the code for the method process().

SStteepp 1155.. If no customer was served, set serving to null.

SStteepp 1166.. At the end of processing, make sure to set postActionReport with a string describing
the actions taken by the event.

SStteepp 1177.. In the constructor for Teller, add code that will generate the first
CheckForCustomerEvent. (This is similar to how the customer generator operates.)

Checkpoint: The teller should now take customers from the line. As customers are serviced, the
report should change. Step and carefully trace the operation of the simulation. Verify that it is
operating correctly.

Change the service interval time and verify that customers are handled quicker.

GGrraapphhiinngg tthhee RReessuullttss
SStteepp 1188.. Run the simulation with a maximum interval of 20 and a simulation time limit of 1000.
Fill in the following table.

MAXIMUM
SERVICE

TIME

AVERAGE
WAIT TIME

FOR
CUSTOMERS SERVED

6
8

10
12
14
16
18
20
22
24

Lab Manual for Data Structures and Abstractions with Java ™ 213

SStteepp 1199.. Use the table to plot points on the following graph.

Suppose the service time is greater than the interval that customers appear. You expect that the teller
will fall behind and the length of the line will increase without bound. If the service time is less, you
expect that the teller will be able to keep up.

The interesting question is what happens when the service and interval times are the same. How long
will the line be on average in this case? It turns out that the average, as the simulation time increases,
will approach infinity. This will also have an effect on the average waiting time.

SStteepp 2200.. Run the application 20 times with the initial settings and record the average. (Warning: If
you set the animation delay time to be too small, the animation may not stop at the end of the
simulation but restart at time zero.)

SStteepp 2211.. What was the maximum average wait?

SStteepp 2222.. What was the minimum average wait?

Lab 14 Queue Implementation and Client214

PPoosstt--LLaabb FFooll llooww--UUppss

1. Implement a new version of SimulationEventQueue, which uses a linked list.

2. Add two private queues to the CustomerGenerator that will store name syllables. When
generating a name, take one syllable from each queue and concatenate them together. Put the
syllables back on the ends of their respective queues. Set the queues so that each has a length
that is a different prime.

3. Modify the simulation so that it has two tellers that take customers from a single line.

4. Modify the simulation so that it has two tellers, each with their own separate line.

5. Add an event to the Report class to collect statistics. Each time the event occurs, the length of
the line will be recorded in order to compute the average, minimum, and maximum length of
the line.

6. One of the good things about an event-driven simulation is that it will jump over times
where nothing is happening. In the animation, this can cause sudden jumps in time. Add a
class that will generate dummy events every second. The only responsibility of the event is to
schedule the next dummy event.

7. For those familiar with statistics and calculus: Change the CustomerGenerator class so that
the time between customers is determined according to a Gaussian distribution with a given
mean and standard deviation. (To do this, consult a book on statistics and find a table that
gives the cumulative distribution for a Gaussian distribution. Generate a value between 0
and 1 and interpolate to find a z score. From this, use the mean and standard deviation for
the desired distribution to find your value.) Make a similar change for the service time for the
Teller class. There are other distributions you can try as well.

8. Change the BankLine to be a priority queue. Each customer generated will have one of two
priorities, high or low. Have the Report class report the average waiting time for each
priority level.

9. For those familiar with Java graphics: Make the event queue a displayed object by the
animation.

215

LLaabb 1155 TTrreeee CCll iieenntt

GGooaall
In this lab you will use a binary tree to create a Huffman code for compressing data.

RReessoouurrcceess
• Chapter 25: Trees

• TreeInterface.html—API documentation for the tree ADT

• BinaryTreeInterface.html—API documentation for the binary tree ADT

• HuffmanTreeInterface.html—API documentation for the Huffman tree ADT

• HuffmanTree.html—API documentation for the class HuffmanTree

• SymbolFrequencyPacket.html—API documentation for the class SymbolFrequencyPacket,
which is the data in a node of a Huffman tree

• Message.html—API documentation for the class Message, which is a buffer containing a
message of type Character

• Code.html—API documentation for the class Code, which is a buffer containing the coded
message

• Encode.jar—The working application

JJaavvaa FFii lleess
Files in Directory Huffman Code:

• FindDefaultDirectory.java
• EncodeApplication.java
• EncodeActionThread.java
• Code.java
• Message.java
• There are other files used to animate the application. For a full description see Appendix A.

In TreePackage

• SymbolFrequencyPacket.java
• TreeInterface.java
• BinaryTreeInterface.java
• HuffmanTreeInterface.java
• HuffmanTree.java
• There are other files in tree package, but they will not be used in this lab.

IInnppuutt FFii lleess
• message1.txt—A two line message to encode
• message2.txt—The same message as the first, but spaces have been added
• message3.txt—A four line message to encode
• message4.txt—A longer message to encode

IInnttrroodduucctt iioonn
A tree is a data structure that has a lot of different uses. Today’s lab will focus on using a tree to
create a variable length code for an alphabet.

Lab 15 Tree Client216

UUssiinngg aa TTrreeee ttoo RReepprreesseenntt aa CCooddee
Consider a binary tree where each leaf holds a different symbol. The path from the root of the tree to
each symbol is unique. These paths can be used as binary codes for the symbols. Each right branch is
a one, and each left branch is a zero. The following tree is an example.

It corresponds to the following binary code:

SYMBOL CODE
A 01
B 00
C 1111
E 110
N 1110
T 10

Codes that are based on trees will have the prefix property. This means that no code is the prefix of
any other code. If this is not the case, decoding is more difficult. For example, suppose that the
symbol Y was given the code 11. If the coded message is 110111…, what does the initial 11 represent?
Is it a Y? Or is it the start of E, N, or C?

Once a tree for a code has been generated, it can be used for both encoding and decoding. To encode
a character, just follow the branches from the root to the desired symbol. At each branch, output a 1
or 0. To decode a message, start at the root. For each 0, take a left branch. For each 1, take a right
branch. When a leaf is reached, output the symbol and start over at the top.

Lab Manual for Data Structures and Abstractions with Java ™ 217

PPrree--LLaabb VViissuuaall iizzaattiioonn

HHuuffffmmaann EEnnccooddiinngg
A Huffman code is a variable length code that minimizes the length of the message. The basic idea is
that symbols that are frequently encountered in the message will be represented by short codes. On
the other hand, infrequent symbols will have longer codes. The following tree was constructed from
the message:

THE CAT IS THAT CAT

Encode the message: THE CAT IS THAT CAT

How many bits were used?

If each character had a fixed length (each of the 7 symbols can be represented using a 3-bit code), how
many bits would be used?

Lab 15 Tree Client218

GGeetttt iinngg tthhee FFrreeqquueenncciieess
The structure of the Huffman tree must depend on the frequencies of the letters. Therefore, the first
task is to compile a count of each letter in the message. Consider the following message:

CHEESES CHEESES
T CLEESE SELLS THE CHEESES

How many times does each character appear in the message?

SYMBOL COUNT
A
C
E
H
S
T

To construct the counts, you can start with an array of size 128. This is large enough to hold a count
for each of the 128 possible 7-bit ASCII characters. (Any character with an integer value greater than
128 is ignored.)

Give an algorithm for computing the frequency count for the letters in a message. The message will
be stored in an object of type Message. It obeys the Java Iterator interface, so you can use it in that
fashion to get the characters one at a time. Review its protocol before you start. Assume that there is a
method charToInt, which will return the ASCII integer value associated with a given character.

CCrreeaatt iinngg tthhee IInniitt iiaall FFoorreesstt ooff TTrreeeess
Once the counts have been done, the next step is to create a collection (forest) of Huffman trees. To
start there will be one tree for each possible symbol. Each of the trees will have a single node, where
the data portion is an instance of SymbolFrequencyPacket. The packet’s list will contain just the
character. The packet’s frequency will be the count for that character.

Lab Manual for Data Structures and Abstractions with Java ™ 219

Fill in the initial trees for the characters and counts that were found in the previous section.

Give an algorithm for creating the forest of trees given an array of the counts. Review the protocol for
SymbolFrequencyPacket and HuffmanTree before hand. Assume that there is a method intToChar,
which will return the character associated with a given ASCII integer code value.

Lab 15 Tree Client220

FFiinnddiinngg tthhee CCooddee TTrreeee
At this point an iterative process will be applied to construct a single Huffman tree out of the forest of
trees. It will be illustrated by a small example. At each step the two trees with the smallest frequency
will be removed from the forest and replaced by a single tree. The new tree will have the tree with the
smallest frequency on the left and the second smallest tree will be on the right. The list of symbols in
the root will be the concatenation of the lists from the two smallest trees. The frequency in the root
will be the sum of the frequencies of the two smaller trees.

In the following example, the two smallest trees in the forest are the Z and the X.

Those two trees will be removed and then used to form the tree that will be added. Since the count
for Z is less than that of X, Z will go on the left. (This is an arbitrary choice that will make no
difference in the effectiveness of the code, but it can make it easier to check that the construction
process is working properly.)

Lab Manual for Data Structures and Abstractions with Java ™ 221

Now the two smallest trees are the Y and XZ, both with a count of 3. Which one should go on the left?
Pick either one. If you need to pick among a number of trees of the same frequency, any one of them
can be safely chosen.

The final step is to combine the last two trees in the forest.

Lab 15 Tree Client222

Show the trees combined at each step and the final Huffman tree resulting from the initial forest that
was constructed in the previous section. If it is correct, the message 111011110101100 will either
decode to CHEST or HCEST.

Trees combined in step 1:

Trees combined in step 2:

Trees combined in step 3:

Lab Manual for Data Structures and Abstractions with Java ™ 223

Trees combined in step 4:

Trees combined in step 5:

Lab 15 Tree Client224

Final tree:

Give an algorithm for creating the forest of trees given an array of the counts. Assume that the forest
of trees is stored in an array. HHiinntt: It might be helpful to swap the tree of smallest frequency with the
last tree in the array.

EEnnccooddiinngg tthhee MMeessssaaggee
Encode the message

CHEESE

using the final Huffman tree from the previous section.

Lab Manual for Data Structures and Abstractions with Java ™ 225

Give an algorithm for encoding a single character. The coded text will be stored in an object of type
Code. It is a displayed object of the animation. As the bits are added to the code, they will show up in
color on the animation panel. The HuffmanTree class is also a displayed object. As the final tree is
accessed, the path of nodes from the root is highlighted. Don’t forget to review the protocol for both
classes before starting.

Give an algorithm for encoding a message. The message is stored in an object of type Message. It is a
displayed object. As each character is accessed, it will change color.

Lab 15 Tree Client226

DDiirreecctteedd LLaabb WWoorrkk

GGeetttt iinngg tthhee FFrreeqquueenncciieess
All of the classes needed for the EncodeApplication exist. This application is based on the
AnimatedApplication framework. If you have not already, you should look at the description of it
in Appendix A. The class that you will be working on is EncodeActionThread. There are a number of
other classes that are specific to this application that you will need to work with. These classes are
SymbolFrequencyPacket, HuffmanTree, Message, and Code. Take a look at them now, if you have
not done so already.

SStteepp 11.. Move the files message1.txt through message4.txt to the directory your particular
implementation of Java reads from and writes to.

SStteepp 22.. Compile the class EncodeApplication. Run the main method in EncodeApplication.

Checkpoint: If all has gone well, you should get a graphical user interface with step controls along the
top and application setup controls on the bottom. There should be one text field where you can enter
the name of a file containing the message to encode. Type message2.txt for the text file and then
press enter. There should be a message indicating that it is now the text file. If not, check to make sure
that you copied the file to the correct place. The application will read the text into Message. Step
twice. The first two lines of the message should appear with the first character displayed in red.

SStteepp 33.. In EncodeActionThread, add a declaration for an array of integers that will hold the
counts.

SStteepp 44.. In the method getCounts() in EncodeActionThread, add code that will get the
characters from the message one by one and compute and return an array with the frequencies. Use
the existing method charToInt() in EncodeActionThread. Note that it expects a char and will
return an Integer. Refer to the algorithm from the Pre-Lab exercises.

SStteepp 55.. In the executeAppliction() method, call getCounts() and then print the array that is
returned.

Checkpoint: The application should run. Use message1.txt for the text file. Step twice. The counts
array should be printed on the system output. It should match the counts from the Pre-Lab exercises.
The message should also show that it is on the last line and no characters in the message should be
red.

Now that the counts are ready, it is time to create the forest of trees.

CCrreeaatt iinngg tthhee IInniitt iiaall FFoorreesstt ooff TTrreeeess
SStteepp 66.. In the method getInitialTrees() in EncodeActionThread, add code that will use the
frequencies array to create one Huffman tree for each nonzero count. Use the existing method
intToChar() in EncodeActionThread. Note that it expects an int and will return a Character.
Refer to the algorithm from the Pre-Lab exercises.

SStteepp 77.. In the executeAppliction() method, call getInitialTrees().

SStteepp 88.. Set the variable numberOfTrees.

SStteepp 99.. After setting numberOfTrees, add in the following line of code to make the animation
pause. (For further questions, see the discussion in Appendix A.)

animationPause();

Lab Manual for Data Structures and Abstractions with Java ™ 227

Checkpoint: The application should run. Use message1.txt for the text file. Step twice. The initial
forest of trees should be displayed.

FFiinnddiinngg tthhee CCooddee TTrreeee
SStteepp 1100.. In the method combineTrees() in EncodeActionThread, add code that will combine the
two smallest frequencies trees into a single tree in the forest. Refer to the algorithm from the Pre-Lab
exercises.

SStteepp 1111.. At the end of the combineTrees() method, add in the following line of code to make the
animation pause.

animationPause();

SStteepp 1122.. In the executeAppliction() method, call combineTrees().

Checkpoint: The application should run. Use message1.txt for the text file. Step twice. The initial
forest of trees should be displayed. Step once more. The T and the L should be combined into a single
tree. The top of that tree should display a red 5.

SStteepp 1133.. In the executeAppliction() method, revise the code so that trees are combined until
the final code tree is the only one left. It should be at index 0.

SStteepp 1144.. After the final tree has been created, set the variable treeCreated to true.

Checkpoint: The application should run. Use message1.txt for the text file. Step twice. The initial
forest of trees should be displayed. Continue stepping. The sequence of forests should match those
from the Pre-Lab exercises.

EEnnccooddiinngg tthhee MMeessssaaggee
SStteepp 1155.. In the method encodeCharacter() in EncodeActionThread, add code that will get a
character from the message, encode it, and add a “0” or “1” depending for each left or right branch,
respectively, that was taken. Refer to the Pre-Lab exercise.

SStteepp 1166.. After a character is added to the code, do an animation pause.

SStteepp 1177.. In the executeAppliction() method, get a character from the message.

SStteepp 1188.. After getting the character, reset the code tree.

SStteepp 1199.. After that, add code to make the animation pause.

SStteepp 2200.. Finally, call encodeCharacter().

Checkpoint: The application should run. Use message1.txt for the text file. Step until the final code
tree is displayed. Step once more. The first character in the message should be red. A “1” should
appear in red in the code. The 22 (frequency of the right child of the root) of the code tree should
appear in red to indicate the right branch was taken. Continue stepping and verify that the correct
code is produced.

SStteepp 2211.. In the executeAppliction() method, revise the code so each character in the message is
encoded.

SStteepp 2222.. Print the final code buffer to System.out.

Final checkpoint: The application should run. Use message1.txt for the text file. Each character in
the message should be coded. Verify the code of the first part of the message “CHEESE” against the
Pre-Lab results.

Lab 15 Tree Client228

Run the application for message2, message3, and message4. Record the final code tree for each on
paper. Decode the results by hand and verify the results.

The trees for these texts may appear a bit strange since the space character does not draw. When
highlighted, it will not show up either.

The tree for message4 will have nodes that overlap each other towards the bottom. This can be
alleviated a bit by having the application use a bigger window. (Change the value of
DISPLAY_WIDTH to be larger.) Since there are 10 levels to the tree, this will only be a minor
improvement.

PPoosstt--LLaabb FFooll llooww--UUppss

1. Develop and implement a method that uses a Dictionary to count the characters in a
message.

2. Make a new version of the EncodeApplication that considers each word in the text as a
symbol.

3. Make a new version of the EncodeApplication that strips any nonalphanumeric character
from the message.

4. Modify the code to use a List instead of an array to hold the forest of Huffman trees. Use an
iterator to find and remove the two smallest frequency trees.

5. Develop a format for representing a Huffman tree using a string of characters which is
suitable to be written to a file. Add two methods to HuffmanTree. The method writeTree()
will return a string that is the representation of the tree. The static method
parseTree(String) will return a HuffmanTree equivalent to the representation in the
String. Throw an exception if the string is not in the correct format. You might find it
convenient to have some pattern of characters that marks the beginning and end of the
representation as well.

6. Develop and implement a method that will decode a message using a HuffmanTree.

7. Create a new animated application that will read a Huffman tree from a file (Use the results
from question 5.). Then read a message from another file and decode it. The Message and
Code classes will require only minor changes.

8. Develop and implement an application that will read a fully parenthesized arithmetic
expression with the binary operators +, *, -, /, and integer constants and display the
expression tree. Use a recursive algorithm to evaluate the expression.

9. Use the classes from the previous problem and create an animated application. Step with
each completed evaluation. Show the result in the node in red.

10. For those familiar with Java graphics: Change the drawOn method of HuffmanTree to make
the displayed structure of the tree esthetically pleasing while having no overlapping nodes.
There are a number of things you can try. For example, you can evenly space the nodes on
every level, or you can stagger the nodes in a level vertically. Nodes on the same level do not
have to be at the same height in the drawing. About the only requirement is that right and
left links should be distinguishable from one another.

229

LLaabb 1166 TTrreeee IImmpplleemmeennttaatt iioonn

GGooaall
In this lab you will modify a binary tree so that its nodes have parent references. Post-order traversal
will be implemented using the parent references.

RReessoouurrcceess
• Chapter 25: Trees

• Chapter 26: Tree Implementations

• TreeInterface.html—API documentation for the tree ADT

• BinaryTreeInterface.html—API documentation for the binary tree ADT

• BinaryTreeAccessInterface.html—API documentation for a binary tree with an embedded
current node

• BinaryWithParentsTreeAccessInterface.html—API documentation for a binary tree
with an embedded current node that supports moving to the parent

JJaavvaa FFii lleess
• TestBinaryTree.java
• TestBasicAccess.java
• TestParentAccess.java
• TestPostorderIterator.java
• PreToPost.java

In TreePackage

• BinaryNode.java
• BinaryTree.java
• TreeInterface.java
• BinaryTreeInterface.java
• BinaryTreeAccessInterface.java
• BinaryWithParentsTreeAccessInterface.java

Lab 16 Tree Implementation230

IInnttrroodduucctt iioonn

BBiinnaarryy TTrreeee
A binary tree is a tree where every node has zero, one, or two children. Each node will have two
links, one for each child. If the there is no child, the link will be null. The following is an example of a
binary tree.

To travel in the tree, you must start at the root and traverse either right or left links until you reach
the desired node. Just as a chain can be doubly linked to make it easier to move backward, you can
add parent references to the nodes. Adding parent references to the preceding tree yields the
following tree.

Lab Manual for Data Structures and Abstractions with Java ™ 231

PPrree--LLaabb VViissuuaall iizzaattiioonn

CCoonnssttrruucctt iinngg aa BBiinnaarryy TTrreeee
There is one detail about the implementation of BinaryTree that is important to understand for this
lab. Consider the following chunk of code.

BinaryTree b1 = new BinaryTree(“a”);
BinaryTree b2 = new BinaryTree(“b);
BinaryTree b3 = new BinaryTree(“c”, b1, b2);
BinaryTree b4 = new BinaryTree(“d”, b3, b3);

Make a prediction of the contents and structure of each tree at the end of the code.

bb11 bb22 bb33 bb33

The first two statements each create a tree containing one node. In the following trees, null references
out of a node are not drawn.

The third statement does not necessarily do what one might expect. The nodes from the two trees b1
and b2 are used to build the tree b3. It might not be expected that b1 and b2 no longer have access to
those trees, but it is important for the integrity of b3.

Lab 16 Tree Implementation232

The final statement is requesting b3 twice. Since both subtrees cannot share the nodes, a copy must be
made. The final picture is

BBaassiicc AAcccceessss ttoo aa BBiinnaarryy TTrreeee
As defined in the class BinaryTree, there is not much you can do with the binary tree except to build
and traverse it. For this lab an interface BinaryTreeAccessInterface has been defined that will
allow a client the ability to move through the tree. This is similar to the DecisionTreeInterface,
which was defined in Chapter 25.

There is a current reference, which is kept by the binary tree. It can be reset to the root of the tree.
Query methods are provided to allow the client to ask if the current node has right or left children.
There are methods that allow the client to move the current reference to the right or left child. Finally,
there is a method that will allow the client to get the data in the node that is the current reference.

There are two fundamental questions that must be answered for the access.

WWhhaatt hhaappppeennss iiff tthhee rreeffeerreennccee iiss aaddvvaanncceedd bbuutt tthhee cchhii lldd ddooeess nnoott eexxiisstt??
WWhhaatt hhaappppeennss iiff tthhee ttrreeee iiss eemmppttyy??

One possibility is for the bad advance to throw an exception. Another possibility is to leave the
reference where it is. A third possibility is to let the reference become null. All three are reasonable
choices. In this implementation, the third option is chosen.

Once the current access becomes null, it should not be used. If the client asks for data, just return null.
If the client attempts to move, leave it null. If the tree is empty, the current access will be null and it
will behave in a reasonable way.

Once parent references have been added to the tree, the access interface will be extended with a
query and move method that will work with the parent reference.

PPaarreenntt RReeffeerreenncceess
For the most part, adding parent references to a binary tree is a simple operation. There are only two
places where a parent reference will need to be changed. The first is privateSetTree() in
BinaryTree. It is the place where two trees are composed together to create a larger tree. The parent
references of the roots of the two subtrees must be fixed to point to the new root. The other place
where parent references must be fixed is not as obvious.

Lab Manual for Data Structures and Abstractions with Java ™ 233

Consider the copy operation from BinaryNode. It will make a copy of the top node, then recursively
copy the subtrees. Note that the links cannot just be copied. If they were, they would point to the
original nodes. Suppose that the following tree is going to be copied.

It will be assumed that copies of the subtrees will be made recursively. Once this is done, it just
remains to link up the subtrees with a copy of the root node. The following picture shows the state of
the copy at that point.

Show the links that must be formed. In the lab, a second version of the copy operation will be created
that takes a single parameter, which will be the parent of the copy.

Lab 16 Tree Implementation234

PPoosstt--OOrrddeerr IItteerraattoorr
The strategy employed by the iterator is to keep a reference to the node that will be produced by the
next method. When next is called, the value to be returned is retrieved from the referenced node.
Then the reference will be moved to the next node.

In the following tree, label the nodes numerically with the order that they will be visited by a post-
order traversal.

CCoonnssttrruuccttoorr::
The constructor for the post-order iterator must find the first node in a post-order traversal. Give
an algorithm for that operation.

HHaassNNeexxtt(())::
This method is nearly trivial. What is the condition for hasNext() to return true?

NNeexxtt (())::
The method next() must move to the next node in the post-order traversal. Examine the
preceding tree and answer the following questions.

Lab Manual for Data Structures and Abstractions with Java ™ 235

Can the next node ever be below the current node?

Is the next node ever not the parent of the current node?

How can those cases be recognized? Write down a condition.

If the next node is not the parent, give an algorithm for finding it.

PPrree--OOrrddeerr EExxpprreessssiioonnss
One way to construct an arithmetic expression is to use a prefix notation. The operations come before
the arguments they will be applied to. Let’s look at the problem of constructing an binary tree from a
prefix expression. Consider the prefix expressions

* + 1 / 2 3 - 4 5
+ 1 + + 3 4 5
- + 3 4 / 2 + 3 4

Draw a binary tree for each of the expressions where the leaf nodes are values and the interior nodes
are binary operations. A pre-order traversal must produce the prefix expression.

In the preceding prefix expressions; circle the tokens (values and operators) that are in the left
subtree. Circle the tokens in the right subtree. This hints that a recursive algorithm can be used to
construct the binary tree from the prefix expression.

Lab 16 Tree Implementation236

Give a recursive design for getTree that constructs a binary tree from an expression.

IIddeenntt iiffyy tthhee pprroobblleemm::

IIddeenntt iiffyy tthhee ssmmaall lleerr pprroobblleemmss::

IIddeenntt iiffyy hhooww tthhee aannsswweerrss aarree ccoommppoosseedd::

IIddeenntt iiffyy tthhee bbaassee ccaasseess::

CCoommppoossee tthhee rreeccuurrss iivvee ddeeffiinniittiioonn::

Lab Manual for Data Structures and Abstractions with Java ™ 237

Show the operation of your definition on the expression
* + 1 / 2 3 - 4 5

DDiirreecctteedd LLaabb WWoorrkk
The main classes that you will be working with today are BinaryTree and BinaryNode. Take a look
at them now, if you have not done so already. To verify that these classes work, you can run
TestBinaryTree.

MMooddiiffyyiinngg BBiinnaarryyTTrreeee ffoorr BBaassiiccAAcccceessss

SStteepp 11.. Change the declaration of the BinaryTree so that it implements
BinaryTreeAccessInterface.

SStteepp 22.. In BinaryTree, add the six methods required by BinaryTreeAccessInterface.

SStteepp 33.. In BinaryTree, add a private variable of type BinaryNode<T> that will reference the
current access node.

SStteepp 44.. Implement the each of the methods just added. Refer to the Pre-Lab.

SStteepp 55.. Anytime the structure of the binary tree is changed, the access needs to be reset. Call
resetAccess() in the constructors, setTree(), and clear().

Checkpoint: Compile BinaryNode and BinaryTree. Run TestBinaryTree and TestBasicAccess.
All tests should pass.

MMooddiiffyyiinngg BBiinnaarryyTTrreeee wwiitthh PPaarreenntt RReeffeerreenncceess
SStteepp 66.. In the class BinaryNode, add a private variable that will hold the parent reference.

SStteepp 77.. Add a new constructor, which has four arguments: data, left, right, and parent.

SStteepp 88.. Modify the constructor that takes three arguments to use the new constructor.

SStteepp 99.. Create and fully implement three new methods in BinaryNode:
public BinaryNodeInterface<T> getParent()
public void setParent(BinaryNodeInterface<T> p)
public boolean hasParent()

Checkpoint: Compile BinaryNode and BinaryTree. All tests in TestBinaryTree and
TestBasicAccess should still pass.

SStteepp 1100.. Make a duplicate of the method copy() in BinaryNode and add a single argument
BinaryNode<T> p to the duplicate.

SStteepp 1111.. In the duplicate, set the parent of newRoot to be p.

Lab 16 Tree Implementation238

SStteepp 1122.. In the original, set the parent of newRoot to be parent. (We will assume that if the
original version of the copy method is being called, it is the top of the tree being copied and the
parent should be the same as the node being copied. The duplicate version of copy will be used for all
other nodes in the copy.)

SStteepp 1133.. In both the original and the duplicate, change the two recursive calls to copy() so that
they pass newRoot as the parameter.

Checkpoint: BinaryNode should compile successfully.

Checkpoint: Compile BinaryNode and BinaryTree. All tests in TestBinaryTree and
TestBasicAccess should still pass.

The modification of BinaryNode is finished. The next goal is to modify BinaryTree appropriately.
Any time a new binary tree is created, parent references for children may need to be set.

SStteepp 1144.. Anywhere in BinaryTree that a left or right child is set, set a parent reference in an
appropriate fashion. Since BinaryNodeInterface<T> does not have the methods for accessing the
parent, a cast to BinaryNode<T> will be required.

Checkpoint: Compile BinaryNode and BinaryTree. All tests in TestBinaryTree and
TestBasicAccess should still pass.

It is now time to add in the methods that will allow a client to move the current access to follow a
parent reference.

SStteepp 1155.. Change the declaration of the BinaryTree so that it implements
BinaryWithParentsTreeAccessInterface.

SStteepp 1166.. Add and implement the methods required by the interface.

Checkpoint: Compile BinaryNode and BinaryTree. All tests in TestBinaryTree and
TestBasicAccess should still pass.

It is now time to see if the changes to BinaryNode and BinaryTree have really worked. All tests in
TestParentAccess should pass.

IImmpplleemmeenntt iinngg aa PPoosstt--OOrrddeerr IItteerraattoorr wwiitthh PPaarreenntt RReeffeerreenncceess
SStteepp 1177.. In the class BinaryTree, create a copy of the private inner class InorderIterator.
Rename the copy to PostorderIterator.

SStteepp 1188.. Keep the code in the methods for future reference. The private variable currentNode will
be kept, but nodeStack will be deleted.

SStteepp 1199.. Refer to the Pre-Lab exercises and create a method in PostorderIterator that will move
the current node to the first node to be printed in a post-order traversal.

SStteepp 2200.. Call the new method in the constructor just after setting the currentNode to the root.

SStteepp 2211.. Complete the hasNext() method.

SStteepp 2222.. Refer to the Pre-Lab exercises and complete the next() method. Don’t forget to throw
NoSuchElementException when there are no more elements to be iterated over.

SStteepp 2233.. Remove nodeStack from PostorderIterator.

Lab Manual for Data Structures and Abstractions with Java ™ 239

SStteepp 2244.. Change the method getPostorderIterartor() so that it returns a new
PostorderIterator instead of throwing an exception.

Checkpoint: Compile BinaryTree. All previous test code should still pass.
All tests in TestPostorderIterator should pass.

Now that BinaryTree has a post-order iterator using parent references, it will be used to produce a
post-order traversal of a binary expression tree.

CCoonnvveerrtt iinngg PPrreeff iixx EExxpprreessssiioonnss ttoo PPoossttff iixx
SStteepp 2255.. The application PreToPost exists but needs to be completed.

Checkpoint: The application should run. Enter the prefix expression * 3 4. The application will read
the expression, then quit.

SStteepp 2266.. In the main, create a new Scanner that will break up the string that was read into tokens.
Use next() to get the tokens as strings.

SStteepp 2277.. Complete the method getTree() in PreToPost. Refer to the recursive design in the Pre-
Lab exercises.

SStteepp 2288.. Call the method getTree() in main to create the binary expression tree.

SStteepp 2299.. Create a post-order iterator for the expression tree.

SStteepp 3300.. Use the iterator to print out the values in the expression tree.

Final checkpoint: The application should run. Enter the prefix expression * 3 4. The result should be 3
4 *.

Run the application again. Enter the prefix expression - - / 4 3 + 8 7 2. The result should be 4 3 /
8 7 + - 2 -.

Test the application for other inputs. Try expressions that have too many or too few tokens.

Lab 16 Tree Implementation240

PPoosstt--LLaabb FFooll llooww--UUppss

1. Change the access interface so that it will throw an exception if there is no data value to
return. Also change it so that if the client attempts to move to an empty child another
exception is thrown. Modify BinaryNode and BinaryTree to satisfy the new access methods.
Modify the TestBasicAccess and TestParent to test for the exceptions.

2. Use the parent references along with checking the direction of backtracking (determine if the
current node is the left or right child of the parent) to implement the in-order iterator.

3. Use the parent references along with checking the direction of backtracking to implement the
pre-order iterator.

4. Another way that the iterators can be implemented is to mark the nodes that have been
visited by the iterator. This will require an extra variable stored in the node to indicate the
marking. One problem with this implementation is that there can only be one iterator at a
time. Use the parent references along with marking to implement the post-order iterator.
Change BinaryTree so that there is a single instance of the iterator which is returned by the
getPostorderIterator() method.

5. Use the parent references along with marking to implement the in-order iterator.

6. Use the parent references along with marking to implement the pre-order iterator.

7. Modify the application to use a string tokenizer to break up the arithmetic expressions using
spaces and the four operators as delimeters.

8. Develop and implement a recursive method that will evaluate a binary expression tree.

9. Modify the application to work with Boolean expressions that use the binary operators
^ (and) and v (or) and the unary operator ~ (not).

241

LLaabb 1177 BBiinnaarryy SSeeaarrcchh TTrreeee IImmpplleemmeennttaatt iioonn

GGooaall
In this lab you will modify a binary search tree so that the nodes are threaded in order. In-order
traversal will be implemented using the thread. A client using a binary search tree will be developed.

RReessoouurrcceess
• Chapter 25: Trees

• Chapter 26: Tree Implementations

• Chapter 27: A Binary Search Tree Implementation

• TreeInterface.html—API documentation for the tree ADT

• BinaryTreeInterface.html—API documentation for the binary tree ADT

• SearchTreeInterface.html—API documentation for the binary search tree ADT

JJaavvaa FFii lleess
• TestBinaryTree.java
• TestBST.java
• Identifiers.java

In TreePackage

• BinaryNode.java
• BinaryTree.java

• BinarySearchTree.java
• TreeInterface.java
• BinaryTreeInterface.java
• SearchTreeInterface.java

IInnppuutt FFii lleess
• Small.java

• X.java

IInnttrroodduucctt iioonn

TThhrreeaaddeedd BBiinnaarryy TTrreeeess
A binary tree is a tree where every node has zero, one, or two children. Each node will have two
links, one for each child. In a threaded tree, an extra link is added that threads (links) all of the nodes
in some fashion. In this lab, the threading will link the nodes according to an in-order traversal. In the
following picture, the dashed lines indicate the thread links.

Lab 17 Binary Search Tree Implementation242

The first node in the thread is the first node in an in-order traversal.

BBiinnaarryy SSeeaarrcchh TTrreeee
In a binary search tree, the values stored in the nodes cannot be arbitrary but must be orderable. The
search tree property requires that all values in the left subtree must be less than the value stored in
the node. Similarly, all values in the right subtree must be greater than the value stored in the node. A
binary search tree must satisfy this property at all of its nodes. The following tree is a binary search
tree with the same structure as the previous threaded tree.

Examining each node, you see that the search tree property holds. For example, the values to the left
of 9 are 3, 5, and 6, while the values to the right are 10 and 11. If any two values in this search tree are
switched, it no longer satisfies the search tree property.

Lab Manual for Data Structures and Abstractions with Java ™ 243

Notice that if the threads from the previous picture are followed, the values traversed will be in
ascending order.

One nice property of a search tree is that adding a value in the tree will always be done at a leaf
position.

PPrree--LLaabb VViissuuaall iizzaattiioonn

BBiinnaarryyNNooddee CCooppyy wwiitthh TThhrreeaaddss
One of the responsibilities of the binary node class is to make a copy of the tree rooted by the node.
This is done recursively. The threads add a complication. Consider the following binary tree with
threads.

In making a copy, a new node is created for copying the root, and then the left and right subtrees are
copied. Notice that the links cannot be a straight copy. If so, they would refer to nodes in the original.
Assume that the recursive copy correctly threads all of the nodes within the subtree, with the
exception of the last node. Here is a picture after the copies have been made.

On the picture, indicate the changes that need to be made to complete the copy.

Lab 17 Binary Search Tree Implementation244

Give an algorithm for a method linkSubtreeThreadOut(BinaryNode linkTo) that will link the
thread coming out of the left subtree.

Give an algorithm for a method getSubtreeLeftmost() that returns the node in the right subtree
that should be the target of the thread from the root.

Use the previous two algorithms to show how the following tree is copied.

Lab Manual for Data Structures and Abstractions with Java ™ 245

IInn--OOrrddeerr IItteerraattoorr
The in-order iterator for the threaded binary search tree is nearly trivial. It just needs to follow the
thread links. It will have a current node. When the next method is invoked, the value in the current
node will be returned.

What is the condition for hasNext() to return true?

What does the iterator do for next()?

The only minor complication is how the iterator is initialized. It must set the current node to the first
node in the thread.

Give an algorithm for finding the first node in the thread.

TThhrreeaaddiinngg BBiinnaarryySSeeaarrcchhTTrreeee--AAdddd
As nodes are added to the binary search tree, the threads will need to be adjusted.

Consider the following threaded initial binary search tree.

Lab 17 Binary Search Tree Implementation246

Adding the value 0 will result in the following tree. Put in the thread links and mark the ones that
have changed. (Remember that the thread links give an in-order traversal of the tree.)

Adding the value 4 to the initial tree will result in the following tree. Put in the thread links and mark
the ones that have changed.

Lab Manual for Data Structures and Abstractions with Java ™ 247

Adding the value 8 to the initial tree will result in the following tree. Put in the thread links and mark
the ones that have changed.

Adding the value 7.5 to the previous tree will result in the following tree. Put in the thread links and
mark the ones that have changed.

All of the previous examples added the node as a left child. If the insertion is on the left, where must
the thread for the inserted value go?

Lab 17 Binary Search Tree Implementation248

If the insertion is on the left, where is the thread that must be changed to refer to the new node?

Give an algorithm for finding the node with the thread to change. (You may assume that the tree has
parent references and use them in the algorithm.)

Adding the value 2 to the initial tree will result in the following tree. Put in the thread links and mark
the ones that have changed.

Adding the value 6 to the initial tree will result in the following tree. Put in the thread links and mark
the ones that have changed.

Lab Manual for Data Structures and Abstractions with Java ™ 249

Adding the value 10 to the initial tree will result in the following tree. Put in the thread links and
mark the ones that have changed.

If the insertion is on the right, where must the thread for the inserted value go?

If the insertion is on the right, where is the thread that must be changed to refer to the new node?

Lab 17 Binary Search Tree Implementation250

TThhrreeaaddiinngg BBiinnaarryySSeeaarrcchhTTrreeee——RReemmoovvee

Examine the code for remove in BinarySearchTree.java. There are three cases for remove. If the
node to be removed has no children, it is just removed. If the node to be removed has one child, its
child is moved up in the tree. If the node to be removed has two children, its in-order predecessor’s
data value is copied up. The predecessor is then removed.

The only changes to the structure of tree will involve a node with zero or one children.

Consider the following trees. The node that will be removed is indicated with an X. Draw the threads
and mark the node whose thread will no longer have a target when X is removed.

Lab Manual for Data Structures and Abstractions with Java ™ 251

The change will always be for the in-order predecessor of the node to be removed. Surprisingly, if the
node has no in-order predecessor within the search tree, nothing needs to be done.

Depending on the structure of the tree, there are two cases for finding the in-order predecessor of a
node. Identify the cases and give an algorithm for each one.

Case1:

Case 2:

DDiirreecctteedd LLaabb WWoorrkk
The main classes that you will be working with today are a couple old friends BinaryTree and
BinaryNode, along with a new one BinarySearchTree. Take a look at them now, if you have not
done so already.

MMooddiiffyyiinngg BBiinnaarryyTTrreeee wwiitthh PPaarreenntt RReeffeerreenncceess
The binary tree with parent pointers will be the starting point for this lab. If you did not do the last
lab, this section has the necessary instructions to add in parent references.

To skip this section, copy the final versions of BinaryNode and BinaryTree from the last lab into the
TreePackage folder. Change BinaryTree so that it implements BinaryTreeInterface and then skip
ahead to step 10.

SStteepp 11.. In the class BinaryNode, add a private variable that will hold the parent reference.

SStteepp 22.. Add a new constructor that has four arguments: data, left, right, and parent.

Lab 17 Binary Search Tree Implementation252

SStteepp 33.. Modify the constructor that takes three arguments to use the new constructor.

SStteepp 44.. Create and fully implement three new methods in BinaryNode:
public BinaryNodeInterface<T> getParent()
public void setParent(BinaryNodeInterface<T> p)
public boolean hasParent()

Checkpoint: Compile BinarySearchTree, BinaryNode and BinaryTree. All tests in TestBinaryTree
and TestBST should pass.

SStteepp 55.. Make a duplicate of the method copy() in BinaryNode and add a single argument
BinaryNode<T> p to the duplicate.

SStteepp 66.. In the duplicate, set the parent of newRoot to be p.

SStteepp 77.. In the original, set the parent of of newRoot to be parent. (We will assume that if the
original version of the copy method is being called, it is the top of the tree being copied and the
parent should be the same. The duplicate version of copy will be used for all other nodes in the copy.)

SStteepp 88.. In both the original and the duplicate, change the two recursive calls to copy() so that
they pass newRoot as the parameter.

Checkpoint: BinaryNode should compile successfully.

Checkpoint: Compile BinaryNode and BinaryTree. All tests in TestBinaryTree and
TestBasicAccess should still pass.

The modification of BinaryNode is finished. The next goal is to modify BinaryTree appropriately.
Any time a new binary tree is created, parent references for children may need to be set.

SStteepp 99.. Anywhere in BinaryTree that a left or right child is set, set a parent reference in an
appropriate fashion. Since BinaryNodeInterface<T> does not have the methods for accessing the
parent, a cast to BinaryNode<T> will be required.

Checkpoint: Compile BinaryNode and BinaryTree. All tests in TestBinaryTree and
TestBasicAccess should still pass.

TThhrreeaaddiinngg tthhee BBiinnaarryyTTrreeee
SStteepp 1100.. In the class BinaryNode, add a private variable that will hold the thread reference.

SStteepp 1111.. Add a new constructor that has five arguments: data, left, right, parent, and thread.

SStteepp 1122.. Modify the constructor that takes four arguments to use the new constructor.

SStteepp 1133.. Create and fully implement three new methods in BinaryNode:
public BinaryNodeInterface<T> getThread()
public void setThread(BinaryNodeInterface<T> target)
public boolean hasThread()

Checkpoint: Compile BinarySearchTree, BinaryNode, and BinaryTree. All tests in
TestBinaryTree and TestBST should still pass.

SStteepp 1144.. Create and complete the method linkSubtreeThreadOut () in BinaryNode. Refer to the
Pre-Lab Exercises.

SStteepp 1155.. In both of the copy() methods in BinaryNode make a call to linkSubtreeThreadOut to
thread the left subtree to the root.

Lab Manual for Data Structures and Abstractions with Java ™ 253

SStteepp 1166.. Create and complete the method getLeftmostInSubtree() in BinaryNode. Refer to the
Pre-Lab Exercises.

SStteepp 1177.. In the both copy() methods in BinaryNode add code that will thread the root to the
leftmost node in the right subtree.

Checkpoint: Compile BinarySearchTree, BinaryNode, and BinaryTree. All tests in
TestBinaryTree and TestBST should still pass.

The modification of BinaryNode is finished. The next goal is to modify BinaryTree appropriately.
Any time a new binary tree is created, threads for children may need to be set.

SStteepp 1188.. Anywhere in BinaryTree that a left child is set, set a thread reference for the subtree in
an appropriate fashion. Since BinaryNodeInterface does not have the methods for accessing the
thread/parent references, a cast to BinaryNode will be required.

SStteepp 1199.. Similarly, anywhere in BinaryTree that a right child is set, set a thread reference from
the root to the leftmost node in the subtree in an appropriate fashion.

Checkpoint: Compile BinarySearchTree, BinaryNode, and BinaryTree. All tests in
TestBinaryTree and TestBST should still pass.

It is now time to see if the threads work. The in-order iterator will be changed to use the threads.

IImmpplleemmeenntt iinngg aann IInn--OOrrddeerr II tteerraattoorr wwiitthh TThhrreeaaddss
SStteepp 2200.. In the class BinaryTree, create a copy of the private inner class InorderIterator.
Comment out the original.

SStteepp 2211.. Remove the variable nodeStack. Now that threading is available, the stack will not be
needed.

SStteepp 2222.. Refer to the Pre-Lab Exercises and create a private method in InorderIterator that will
move the current node to the first node to be printed in an in-order traversal.

SStteepp 2233.. Call the new method in the constructor just after setting the currentNode to the root.
(Make sure the root is not null before doing so though.)

SStteepp 2244.. Complete the hasNext() method.

SStteepp 2255.. Complete the next() method. It should be much simpler now. It just needs to remember
the value to return and then move the current reference. Don’t forget to throw
NoSuchElementException when there are no more elements to be iterated over.

Checkpoint: Compile BinaryNode and BinaryTree. All tests in TestBinaryTree should still pass.

This is the first real test of the threading. To debug the code, it may be helpful to print whenever a
node is created (along with the data) and to print whenever a thread is set. When finished, comment
out the print statements. They may be useful in the next section.

Now it is time to make sure that BinarySearchTree respects parent references and threads.

Lab 17 Binary Search Tree Implementation254

TThhrreeaaddiinngg tthhee BBiinnaarryySSeeaarrcchhTTrreeee
SStteepp 2266.. Anywhere in the add() method of BinarySearchTree that a left or right child is set,
parent references and threads must be adjusted. Refer to the Pre-Lab Exercises.

Checkpoint: Compile BinarySearchTree. All the tests except for remove should pass.

SStteepp 2277.. Anywhere in the removeNode() method of BinarySearchTree that a left or right child is
set or the root is changed, parent references and threads must be adjusted. Refer to the Pre-Lab
Exercises. (Of all the methods that collaberate to perform the remove, the only method that affects the
structure of the tree is removeNode, so it is the only one where references might need to change.)

Checkpoint: Compile BinarySearchTree. All the tests in TestBST should pass.

GGeetttt iinngg IIddeenntt iiff iieerrss ffrroomm aa JJaavvaa PPrrooggrraamm
SStteepp 11.. The application Identifiers exists but needs to be completed.

SStteepp 22.. Copy Small.java and X.java to the default directory that Java’s runtime environment
uses.

Checkpoint: The application should run. Enter file name X.java. The program will open the file for
reading then quit.

SStteepp 33.. In the method getPossibleIds() in Identifiers create a loop to read lines from the
file.

SStteepp 44.. In the loop, read a line using the Scanner input and use it to create a StringTokenizer.

SStteepp 55.. Create another loop that uses the StringTokenizer to get tokens and place them in the
binary search tree. (Use a string of delimeters that includes any character that would mark the end of
a token. For example, in the code x+=y*eff; each of the symbols +, * and ; mark the end of an
identifier.)

SStteepp 66.. In the main, use an in-order iterator to print out the values in the binary search tree.

Final checkpoint: The application should run. Enter file name X.java. The list of identifiers should be
a b c d e ef g.

Run the application again. Enter file name Small.java. This is a very short working java application.
The list of possible identifiers should be in alphabetical order and should correctly include the
identifiers in the program.

Test the application on other Java files.

Lab Manual for Data Structures and Abstractions with Java ™ 255

PPoosstt--LLaabb FFooll llooww UUppss

1. Create a new implementation of a threaded binary search tree that uses two thread
references, one to the in-order predecessor and the other to the in-order successor. Do not use
a parent reference.

2. Create a new implementation of a threaded binary search tree that uses circular references for
the threads. (The last node in an in-order traversal threads back to the first node.)

3. Design and implement a recursive version of the method linkSubtreeThreadOut() in
BinaryNode.

4. Design and implement a recursive version of the method getLeftmostInSubtree() in
BinaryNode.

5. Modify the Identifiers application to ignore any text in comments or string constants.

6. Modify the Identifiers application to use a second binary search tree that holds Java
keywords. Do not add keywords to the list of identifiers.

7. Create a new implementation of a threaded binary search tree that uses thread references, but
instead of having the threads give an in-order traversal, create a level-order traversal.

8. An alternate version of a binary search tree allows multiple copies of the same value in the
tree. The search tree property will allow equal value nodes in either sub-tree. When adding a
duplicate value into the tree, randomly choose a sub-tree of the original value. This will help
prevent imbalanced trees. When removing a value from the tree, remove the first copy found.

Develop and implement this alternate version of a binary search tree. The test classes will
need to be changed for the new definition.

257

AAppppeennddiixx AA:: AAnniimmaattiioonn FFrraammeewwoorrkk

AAnniimmaatteedd AAppppll iiccaattiioonn
This appendix describes the framework used by a number of the labs to implement an animated
application. This framework supports applications that have a set up phase where application
specific variables are set. The application then runs and has checkpoints that the user can step
between where the state of the application is displayed graphically. The application can be reset at
any point and restarted. Note that this framework is not designed to handle applications like games
that periodically require user input, but an experienced programmer could modify it to do so.

Instead of just giving the framework with blanks to be filled in by the programmer, a simple
application demonstrating the framework is shown. It computes the terms of an arithmetic sequence.

TThhee FFrraammeewwoorrkk
The following class diagram shows the relationship among the classes in the application. The classes
that are shaded are the specific classes that implement the application. The other classes are the
framework classes.

AAnniimmaatteeddAApppplliiccaatt iioonn
This class has the main() method used to invoke the application. It is responsible for creating

1. an AnimatedApplicationFrame, which contains the controls for stepping the
application,

2. a Stepper, which is how the application will signal that it is waiting, and

3. an ActionThread that executes the application.

Appendix A258

Once these objects are created, main starts the ActionThread. This is the only class in the framework
that needs to change for different applications. (An action thread of the appropriate type needs to be
created.)

SStteeppppeerr
This class acts as an intermediary between the control components of the frame and application. It
has a number of methods where the action thread can wait for a step to occur. The state of the action
thread (setup phase, initial phase, stepping, final phase) will be indicated by the specific call that gets
made. The animation frame will set the controls based on the state of the stepper. When stepping, the
stepper will keep track of the step that the application is on.

ggeettSStteepp(())—This method is used by the application frame when displaying the controls. It
returns the number of application steps since the last reset.

ggeettSSttaattuuss(())—This method is used by the application frame when displaying the controls.
It returns what kind the wait step was.

sseettuuppSStteepp(())—This method will be used by the action thread. It will change the status of
the stepper and then wait for notification it can continue. It should only be used to indicate
that the application specific controls can be used to set the parameters for the application.

iinniittiiaallSSttaatteeSStteepp(())—This method is used by the action thread. It will change the status
of the stepper and then wait for notification it can continue. This step occurs after
initialization has been performed for the application, but the application has yet to start
running.

aanniimmaattiioonnSStteepp(())—This method is used by the action thread. It will change the status of
the stepper and then wait for notification it can continue. These steps are counted and are the
actual steps in the execution of the application.

ffiinnaallSStteepp(())—This method is used by the action thread. It will change the status of the
stepper and then wait for notification it can continue. In this step the application has finished
execution and the final state of the animation display is held so it can be viewed.

It is not intended that the application thread interact directly with the stepper, but instead will use
methods defined in the abstract class ActionThread to affect the stepper.

This class should not be changed for new applications.

AAnniimmaatteeddAApppplliiccaatt iioonnFFrraammee
This class is subclass of JFrame and holds the entire application. It creates the user interface
components for stepping the application. The control components are placed in a panel, which in
turn is placed in the north position of the frame. The specific animation panel for the application is
retrieved from the action thread and placed in the center position of the frame. This class will use a
Timer that fires and generates a step at given intervals. The timer will be started if go is pressed. It
will be stopped if pause or reset is pressed. A step will notify the waiting action thread that it can
continue.

This class should not need to be changed for new applications.

AAcctt iioonnTThhrreeaadd
This abstract class specifies certain responsibilities that an ActionThread must satisfy to “play
nicely” with the AnimatedApplicationFrame. The major responsibilities of an actionThread are to

1. define the general run method for executing the thread,

2. have a stepper object to control the animation,

3. have a panel that the application will do its animation on, and

4. have a mechanism to kill or reset the thread.

Lab Manual for Data Structures and Abstractions with Java ™ 259

The heart of the ActionThread class is the run() method.

rruunn(())—Any thread must define this method to specify what happens when the thread is
executed. For the ActionThread class, the thread will execute the application of interest one
or more times. There will be a setup phase, where the user is allowed to change the input
parameters for the application. The application will be initialized and then executed. There is
a final step, which allows the final state of the application to be displayed. It is not intended
that this method be modified.

The ActionThread class has some methods that its subclasses can use when implementing the
animation

aanniimmaattiioonnPPaauussee(())—This method should be called any time that the state of the
application has changed and the animation needs to be updated. It automatically calls
makeThreadWellBehaved(). It is not intended that this method be modified.

ffoorrcceeLLaassttPPaauussee(())—If you want to kill or reset the animation, an exception needs to be
thrown. Before invoking the exception, you should do an animation pause. This method will
indicate that the animation should go to the last step and it should be called before the
exception is thrown. It is not intended that this method be modified.

mmaakkeeTThhrreeaaddWWeellllBBeehhaavveedd(())—Because of the cooperative technique that Java uses to kill a
thread (explained below) the thread should regularly check to see if it needs to kill itself. It is
automatically as part of every animation pause. If there is a part of the application that is
computationally intensive, it is a good idea to call this function throughout the computation.
It is not intended that this method be modified.

ggeettAAnniimmaattiioonnPPaanneell(())—Get the panel that is holding the application specific animation.
It is not intended that this method be modified.

aapppplliiccaattiioonnCCoonnttrroollssAArreeAAccttiivvee(())—Returns true if the animation is in the setup
phase and the application specific controls should be active. It is not intended that this
method be modified.

As an abstract class, ActionThread specifies some methods that are the responsibility of its specific
subclasses to implement. These are related to the general mechanism for executing the thread.

ggeettAApppplliiccaattiioonnTTiittllee(())—Return the title of this application.

ccrreeaatteeAAnniimmaattiioonnPPaanneell(())—Create and return the panel that the application will do its
animation on.

sseettUUppAApppplliiccaattiioonnSSppeecciiffiiccCCoonnttrroollss(())—Create all of the components and panels for
the user interface for the application. Place them on the animation panel. (Use the
getAnimationPanel() method.)

Since the panel will also be used to display the animation, you should be careful about where
the components are placed. It is probably best to leave the center free. Placing the controls on
the right side or the bottom may also make it easier to draw the animation. Creating the
handlers for the controls can be done in a number of different ways. One fairly typical
technique (which is used in the example) is to create an anonymous inner class that acts as a
listener for the component. It calls a handler method, which is easier to locate than code
embedded in the inner class.

iinniitt(())—This method will be run before the application is executed in the setup phase. It
will initialize any variables that the application will use.

eexxeeccuutteeAApppplliiccaattiioonn(())—A method that does a single execution of the application. The
entire code for the application may be contained within this method, but it is not required. In
fact, good program design encourages abstraction via the creation of other methods. For
thread safety, the application should never change or access any of the components in the

Appendix A260

user interface. Instead, it will change display variables. The display will be redrawn using the
new status of the display variables when the animationPause() method is invoked.

One of the requirements is that the application that is being run should be killable. The approved
technique in Java is to use cooperative action. The outside object, which wishes to kill the thread, calls
a method that sets a variable. Periodically the thread must check this variable and if needed kill itself.

The thread that is created will run the application one or more times. This necessitates the ability to
reset the application in the thread. Using cooperative action, a variable will be set. As before, the
thread is responsible for checking periodically to see if it needs to be reset.

rreesseettEExxeeccuuttiioonn(())—Allow an outside object to signal this thread to reset the application
it is currently running.

kkiillllTThhrreeaadd(())—Allow an outside object to signal this thread to kill itself.

RReesseettAApppplliiccaatt iioonnEExxcceepptt iioonn
The makeThreadWellBehaved() method in ActionThread will throw this exception if the current
execution of the application should be halted. It is caught by run() and appropriate action is taken.
This class should not need to be changed for new applications.

KKiill llTThhrreeaaddEExxcceepptt iioonn
The makeThreadWellBehaved() method in ActionThread will throw this exception if the thread
needs to die. It is caught by run() and appropriate action is taken. This class should not need to be
changed for new applications.

TThhee AArrii tthhmmeettiicc SSeeqquueennccee AAppppll iiccaattiioonn
There are three classes that implement the application that computes arithmetic sequences. These
three classes are specific to the sample application, but they can serve as a model for the creation of
new applications. One issue that must be addressed in these classes is thread safety.

TThhrreeaadd SSaaffeettyy
The animated application will have two threads running concurrently. One thread will be the
application that is being executed and the other will be a thread that deals with the graphical user
interface. Problems can occur when both threads can access a shared object. If the object is mutable, a
situation can arise where one thread starts to change the state of the object and then is interrupted by
the thread manager. If the second thread accesses the object, it can be in an invalid state. If both
threads mutate the object, they can interfere with one another in unpredictable ways.

AArriitthhmmeett iiccSSeeqquueenncceeAAcctt iioonnTThhrreeaadd
This class is a concrete subclass of ActionThread and has the primary responsibility of defining how
the arithmetic sequence application operates. The major work in using the framework for a different
application lies in creating a class like this.

There are two kinds of private variables that an application will typically have. The first kind of
variable will be referred to as a parameter of the application. These variables can be changed by the
user interface of the application in the setup phase. They are then used to initialize any private
variables that the application needs to run. They should not be changed during the running of the
application. Examples of this kind of variable in the arithmetic sequence application are start and
delta. These variables should always be initialized when they are declared.

The second kind of variable will be referred to as display variables. They are variables that will affect
the graphics display of the animation. Display variables can be accessed by both of the threads in the
animated application so thread safety is an issue. They should either be primitives, immutable, or

Lab Manual for Data Structures and Abstractions with Java ™ 261

specially designed objects. Examples of this kind of variable in the sample application are
mySequencer and count. The responsibilities of the specially designed objects will be shown later
with the ArithmeticSequencer class.

Since ArithmeticSequenceActionThread is a concrete subclass of ActionThread, it must define the
abstract methods of ActionThread. These methods are specialized for the arithmetic sequence
application:

ggeettAApppplliiccaattiioonnTTiittllee(())—Returns "Arithmetic Sequences (Sample Application)".

ccrreeaatteeAAnniimmaattiioonnPPaanneell(()—Creates and returns a new AnimationPanel.

sseettUUppAApppplliiccaattiioonnSSppeecciiffiiccCCoonnttrroollss(())—Creates and places two text fields on the
animation panel, one for the initial value in the sequence and the other for the difference
between terms in the sequence. Creates and places three labels on the animation panel.

iinniitt(())—Initializes all the variables that the application needs to execute. It will be invoked
immediately after the setup phase and may use the application parameters to initialize the
other variables. In the arithmetic sequence application, there are just the two display
variables, count and mySequencer, that need to be initialized.

eexxeeccuutteeAApppplliiccaattiioonn(())—A method that does a single execution of the application. It
contains a loop that runs ten times. The body of the loop adds the next term in the sequence
using the mySeqencer object and then pauses the animation.

The class has two handler methods for the text fields. Thread safety is an issue with these methods
since they will be invoked from the user interface thread. The handlers should only change the
parameters for the application. In addition, only the handlers are allowed to access the user interface
components.

ccoouunnttBByyTTeexxttFFiieellddHHaannddlleerr(())—A handler method that gets the string from the
countByTextField, converts the string into an integer, and then initializes the count
parameter.

ssttaarrttAAttTTeexxttFFiieellddHHaannddlleerr(())—A handler method that gets the string from the
startAtTextField, converts the string into an integer, and then initializes the start

parameter.

To be really well behaved, the handlers should only change the parameters if the application is in the
setup phase. The method applicationControlsAreActive() can be used to check if the
application is in the setup phase.

The application thread (any methods that are invoked from executeApplication()) should not
access any of the user interface components, as they are not thread safe.

AAnniimmaatt iioonnPPaanneell
It is expected that every subclass of ActionThread will have an inner class that has the single
responsibility to draw the animation frame. Thread safety is a concern, so it should only access
display variables.

ppaaiinnttCCoommppoonneenntt(())—This method draws the animation frame. It must call the super class
method first. This guarantees that any components on the panel are drawn. It is expected that
specially designed display classes will do most of the actual drawing. Before drawing, it is
important to check that any nonprimitive display variables are nonnull.

For the arithmetic sequence application, the number of terms added from the sequence is
drawn in a string. If mySequencer has been initialized, it will draw itself on the panel.

Appendix A262

AArriitthhmmeett iiccSSeeqquueenncceerr
The display variable mySequencer is of this type. It is a specialized auxiliary class that holds
information that will be displayed by the application during the animation. This kind of class will
have mutator methods that the application calls.

aaddddNNeexxtt(())—A mutator that directs the object to compute the next term in the sequence. A
string with that term will be added to the list of terms that will be displayed.

The other responsibility of this kind of class is to draw a representation of itself on a given graphics
context.

ddrraawwOOnn(())—This method draws on the given graphics context. Besides the graphics context,
it often will have as parameters x and y coordinates that shift the origin of what it draws. It
may also have a scale parameter that changes the size of the drawing.

For the ArithmeticSequencer application, a star like object will be drawn with one spoke
for each of the terms computed so far. Each of the strings will then be displayed, one to a line.
(Each will have a term in the sequence.)

These auxiliary animation classes are shared by both the application thread (mutator methods) and
the user interface thread (the drawOn() method). Therefore, thread safety is important. All methods
in the auxiliary display classes should be synchronized.

UUssiinngg tthhee FFrraammeewwoorrkk ttoo CCrreeaattee NNeeww AAppppll iiccaattiioonnss
The following is offered as a guideline for using the framework to create a new animated application.
It uses the arithmetic sequence application as a starting point.

PPrreeppaarraatt iioonn
SStteepp 11.. Decide on a name for your application. (The name will be referred to as XXXX in the rest
of the guidelines.)

SStteepp 22.. What information must your application have before it can start? Only list those things
that the user can change.

Examples are

nnuummeerriiccaall vvaalluueess—such as the size of an array or number of values to generate

ssttrriinnggss—such as the name of a file containing data

BBoooolleeaann vvaalluueess—such as a flag indicating the amount of information to be displayed

EEnnuummeerraatt iioonnss—such as the color of a displayed component

SStteepp 33.. What should be displayed at each step of the animation? Create rough sketches.

SStteepp 44.. Is the animation display composed of pieces? Write down class names for each of the
pieces (auxiliary classes). (These are analogous to ArithmeticSequencer in the sample application.)
Give a brief list of responsibilities of these classes. Think carefully about the states that the classes can
be in. List methods that change the state of these classes.

SStteepp 55.. Copy the files in the Arithmetic Sequence folder into a new folder.

SStteepp 66.. Make a copy of ArithmeticSequenceActionThread and call it XXXXActionThread.
Change the class declaration and the constructor to match the new name for the class.

SStteepp 77.. Make a copy of AnimatedApplication and call it XXXXApplication. Change the class
declaration to match.

Lab Manual for Data Structures and Abstractions with Java ™ 263

CChhaannggeess ttoo AAnniimmaatteeddAApppplliiccaatt iioonn
SStteepp 88.. Change the creation of myThread to use XXXXThread instead of
ArithmeticSequenceActionThread.

At this point, no more changes are needed to XXXXApplication. Before working on the action thread,
it is a good idea to create the auxiliary classes that will be used to draw the animation. The class
ArithmeticSequencer can be used as a model.

AAuuxxiill iiaarryy AAnniimmaatt iioonn CCllaasssseess
SStteepp 99.. Create each of the auxiliary classes listed earlier.

SStteepp 1100.. Create constructors for each class.

SStteepp 1111.. Create the accessor methods for each of the classes.

SStteepp 1122.. Create the mutator methods for each of the classes.

SStteepp 1133.. Create a drawOn() method for each class. This class must have a parameter Graphics g,
which is the context that the class will draw itself on. It is strongly recommended that a position (x
and y coordinates) be passed in as well that the drawing will be relative to. A scale parameter may
also be useful.

SStteepp 1144.. Test the auxiliary classes. These tests do not need to be exhaustive and do not need to test
drawOn.

Remember to make all the methods of these classes synchronized so they are thread safe.

The major changes will be to the action thread. These changes will be approached in small chunks.
First the arithmetic sequence applications code will be cleared to make way for the new application.
Keep the original code in comments so it can be referred to if needed.

CClleeaarriinngg OOuutt tthhee CCooddee iinn XXXXXXXXTThhrreeaadd
SStteepp 1155.. Comment out the declaration of the private variables start and delta that were
parameters for the application.

SStteepp 1166.. Comment out the declaration of the private variables mySequencer and count that were
display variables for the application.

SStteepp 1177.. Comment out the body of the methods init(), executeApplication(), and
paintComponent() of the inner class AnimationPanel.

XXXXThread should compile with no errors. The next change to make is to add in the application
specific controls.

CCrreeaatt iinngg tthhee AApppplliiccaatt iioonn--SSppeecciiff iicc CCoonnttrrooll CCoommppoonneennttss
SStteepp 1188.. Refer back to your preparations and create a private variable for each parameter
(required piece of information to start the application). Put them in the place of the declarations for
start and delta. Make sure that they are initialized.

SStteepp 1199.. Create user interface components for each of the parameters to allow them to be set. The
arithmetic sequence application puts all of the components into a panel named setupPanel, which it
puts in the south location of the animation panel. More panels can be used and other locations used
as desired. Do not put anything in the center, since that will be used for displaying the animation.

SStteepp 2200.. Use the existing code as a template for setting up the listeners for each of the
components. Create handler methods for each of the components. (Use the existing handlers as
examples.) Make sure the handlers set the appropriate private variables and provide feedback via the
setupStatusLabel.

Appendix A264

XXXXThread should compile with no errors and the application should run. Check that the
application specific controls operate. The next change will be to initialize the application and make
sure that the animation is displayed correctly.

IInniitt iiaalliizzaatt iioonn ooff tthhee AApppplliiccaatt iioonn
SStteepp 2211.. Change the title returned by getApplicationTitle().

SStteepp 2222.. Create variables for the items that will be displayed graphically by the application.
(These go where mySequencer and count were.)

SStteepp 2233.. Initialize each of the variables that were just created in the init() method.

SStteepp 2244.. Add code to the paintComponent() method, which will draw each of the pieces. Most of
the time this will involve calling drawOn() methods for the specific objects. Two notes: First, make
sure that super.paintComponent(g) is called. The component will not draw correctly without it.
Second, this method may be called before init() has had a chance to work. So before using any
object, make sure that it is nonnull.

XXXXThread should compile with no errors and the application should run. Set the variables and
then click on Step. The initial state of the application should be displayed. Debug the code as needed
so that the display is correct. If needed, you can add calls to the mutators for the display variables in
init() and verify the displays and methods work as expected.

SStteeppppiinngg tthhee AApppplliiccaatt iioonn
SStteepp 2255.. Add in code to executeApplication() that specifies what the application is to do.
Create new methods as needed. Create new private variables as needed. As with any project, it is a
good idea to work incrementally.

Whenever you want the application to change its display, add in the following line of code.

animationPause();

This will make the application wait until it is stepped (either manually, or after a given delay if the go
button has been pressed). It also makes the thread well behaved (checks to see if the application
thread should be killed or reset).

If you have sections of the code that are computationally intensive (do not make many calls to
animationPause()), it is a good idea to add extra calls to makeThreadWellBehaved(). For example,
it can be placed in the body of an iteration or recursive function.

	Text1: Instructor’s Edition, Not for Distribution

