
Think Java:

How to Think Like a Computer

Scientist

5.1.2

by Allen B. Downey

Chapter 15:

Object Oriented Programming

How do Software Developers use OOP?

• Defining classes – to create objects

• UML diagrams – to capture essence of class

• Javadoc – to document code

• Inheritance – to reuse code

1-2

Agenda

• Review of objects and classes 

– standard class pattern

– UML diagrams

– toString, equals

– Javadoc documentation

• OOP's Big 3 Concepts:

– Encapsulation

– Inheritance

– Polymorphism

1-3

Standard classes

• We have learned how to write classes that create
objects

• Some of the principles:

– instance variables represent state of object

• make them private

– constructors allow you to create objects

• overloading for multiple options

– methods represent what you can do with object

• make them public (in general…sometimes private)

• Accessor methods – get information out of object

• Modifier methods – change information inside object
1-4

6-5

Example: Tile class

• A Tile object has the following fields:

– letter. The letter on the tile

– value. The value of the tile

public class Tile

{

private char letter;

private int value;

}

6-6

Access Specifiers

• An access specifier is a Java keyword that indicates
how a field or method can be accessed.

• public

– When the public access specifier is applied to a class
member, the member can be accessed by code inside the
class or outside.

• private

– When the private access specifier is applied to a class
member, the member cannot be accessed by code outside
the class. The member can be accessed only by methods
that are members of the same class.

6-7

The Tile class methods

• The Tile class also has the following methods:
– Tile (constructor – 2 of them)

– getLetter

– getValue

– setLetter

– setValue

– equals

– toString

6-8

UML Diagram

• Unified Modeling Language (UML) provides a
set of standard diagrams for graphically
depicting object-oriented systems.

Class name goes here

Fields are listed here

Methods are listed here

6-9

UML Diagram for
Tile class

Tile

letter

value

Tile ()

getLetter()

getValue()

setLetter()

setValue()

equals()

toString()

6-10

Header for the setLetter Method

public void setLetter (char letter)

Access specifier

Return Type

Parameter variable declaration

Method

Name

Notice the word static

does not appear in the

method header designed to

work on an instance of a

class (instance method).

6-11

Writing the setLength Method

/**

The setLetter method stores a value in the

letter field.

@param letter The value to store in letter field.

*/

public void setLetter(char letter)

{

this.letter = letter;

}

6-12

Accessor and Modifier Methods

• Because of the concept of data hiding, fields in a class
are private.

• The methods that retrieve the data of fields are called
accessors.

• The methods that modify the data of fields are called
modifiers.

• Each field that the programmer wishes to be viewed
by other classes needs an accessor.

• Each field that the programmer wishes to be modified
by other classes needs a modifier.

6-13

Accessors and Modifiers

• For the Tile example, the accessors and modifiers
are:
– getLetter : Returns the value of the letter field.

public char getLetter() …

– getValue : Returns the value of the value field.

public int getValue() …

– setLetter : Sets the value of the letter field.

public void setLetter(char letter) …

– setValue : Sets the value of the value field.

public void setValue(int value) …

• Other names for these methods are getters and
setters.

6-14

UML Data Type and Parameter Notation

• UML diagrams are language independent.

• UML diagrams use an independent notation to show
return types, access modifiers, etc.

Tile

- letter: char

+ setLetter(letter: char) : void

Access modifiers

are denoted as:

+ public

- private

6-15

UML Data Type and Parameter Notation

• UML diagrams are language independent.

• UML diagrams use an independent notation to show

return types, access modifiers, etc.

Variable types are

placed after the variable

name, separated by a

colon.

Tile

- letter: char

+ setLetter(letter: char) : void

6-16

UML Data Type and Parameter Notation

• UML diagrams are language independent.

• UML diagrams use an independent notation to show
return types, access modifiers, etc.

Method return types are

placed after the method

declaration name,

separated by a colon.

Tile

- letter: char

+ setLetter(letter: char) : void

Tile

- letter: char

+ setLetter(letter: char) : void

6-17

UML Data Type and Parameter Notation

• UML diagrams are language independent.

• UML diagrams use an independent notation to show
return types, access modifiers, etc.

Method parameters

are shown inside the

parentheses using the

same notation as

variables.

6-18

Converting the UML Diagram to Code

• Putting all of this information together, a Java class
file can be built easily using the UML diagram.

• The UML diagram parts match the Java class file
structure.

ClassName

Fields

Methods

class header

{

Fields

Methods

}

6-19

Converting the UML Diagram to Code

Tile

- letter: char

- value: int

+ getLetter() : char

+ getValue () : int

+ setLettere (letter: char) : void

+ setValue (value: int) : void

public class Tile

{

private char letter;

private int value;

public char getLetter(){

return this.letter;

}

public int getValue(){

return this.value;

}

public void setLetter(char letter){

this.letter = letter;

}

public void setValue(int value){

this.value = value;

}

}

The structure of the class can be

compiled and tested without having

bodies for the methods. Just be sure to

put in dummy return values for methods

that have a return type other than void.

6-20

Constructors

• Constructors have a few special properties that
set them apart from normal methods.

– Constructors have the same name as the class.

– Constructors have no return type (not even void).

– Constructors may not return any values.

– Constructors are typically public.

6-21

Constructor for Tile Class

/**

Constructor

@param letter The letter of the Tile.

@param value The value of the Tile.

*/

public Tile(char letter, int value)

{

this.letter = letter;

this.value = value;

}

6-22

The Default Constructor

• When an object is created, its constructor is always
called.

• If you do not write a constructor, Java provides one
when the class is compiled. The constructor that Java
provides is known as the default constructor.

– It sets all of the object’s numeric fields to 0.

– It sets all of the object’s boolean fields to false.

– It sets all of the object’s reference variables to the special
value null.

6-23

The Default Constructor

• The default constructor is a constructor with no
parameters, used to initialize an object in a default
configuration.

• The only time that Java provides a default constructor
is when you do not write any constructor for a class.

• A default constructor is not provided by Java if a
constructor is already written.

6-24

Writing Your Own Default Constructor

• A constructor that does not accept arguments is
known as a no-arg constructor.

• The default constructor (provided by Java) is a no-arg
constructor.

• We can write our own no-arg (default) constructor

public Tile()

{

letter = 'A';

value = 1;

}

6-25

Constructors in UML

• In UML, the most common way constructors
are defined is:

Notice there is no

return type listed

for constructors.

Tile

- letter: char

- value: int

+ Tile()

+ Tile(letter: char, value: int)

+ getLetter() : char

+ getValue () : int

+ setLettere (letter: char) : void

+ setValue (value: int) : void

The toString and equals methods

• make the class easier to use

1-26

Tile

- letter: char

- value: int

+ Tile()

+ Tile(letter: char, value: int)

+ getLetter() : char

+ getValue () : int

+ setLettere (letter: char) : void

+ setValue (value: int) : void

+ toString() : String

+ equals(String that) : boolean

The toString method for Tile objects

• Returns a String representation of data in object

• invoked automatically whenever object is printed

public String toString()

{

return letter + "/" + value;

}

1-27

The equals method for Tile objects

• Returns true if two Tile objects have same data

public boolean equals(Tile that)

{

return this.letter == that.letter

&& this.value == that.value;

}

1-28

6-29

Javadoc comments

/**

Constructor

@param letter The letter of the Tile.

@param value The value of the Tile.

*/

public Tile(char letter, int value)

{

this.letter = letter;

this.value = value;

}

• New style -- Start with /**, end with */

• Allows compiler to generate official documentation

• Keyword @param indicates special formatting

6-30

Javadoc comments

/**

The getLetter method returns a Tile

object's letter field.

@return The value in the letter field.

*/

public char getLetter()

{

return letter;

}

• Software developers comment each method for clarity

• Javadoc output can be published straight to web

• Keyword @return indicates special formatting

Consider Bug class from GridWorld

• Source Code

• Javadoc generated from source code above

• Javadoc for all GridWorld classes

• Javadoc is a powerful tool for making existing
classes easier to use

1-31

http://www.minich.com/education/wyo/java/demos/GridWorldDemos/Bug.txt
http://www.horstmann.com/gridworld/javadoc/info/gridworld/actor/Bug.html
http://www.greenteapress.com/thinkapjava/javadoc/gridworld/

Agenda

• Review of objects and classes

– standard class pattern

– UML diagrams

– toString, equals, compareTo

– Javadoc documentation

• OOP's Big 3 Concepts: 

– Encapsulation

– Inheritance

– Polymorphism

1-32

Characteristics of OOP

• Objects represent entities in the real world

– An employee at a company

– A zombie in a video game

– A Bug/Rock/Flower in GridWorld

• Majority of methods are object methods

– like String methods: String s = "hi"; s.length();

– or Tile methods: Tile t = new Tile('Q',8); t.setLetter('J');

• Rather than class methods

– like Math methods: Math.sqrt(5); Math.random().\

1-33

Two Principles of OOP

• Encapsulation: objects are isolated from each
other by limiting the ways they interact,
especially by preventing them from accessing
instance variables without invoking methods.

• Inheritance: Classes are organized in family
trees where new classes extend existing
classes, adding new methods and replacing
others.

– OOP design principles lead to cost savings over
procedural only design

1-34

Encapsulation

• To preserve sanity in large projects

– limit access that other pieces of code have to our
particular object.

– Stop "silly" (or malicious) programmers from changing
the values of our instance variables.

– For example, in another class file someone writes:
Time t = new Time(12,25,35);

t.hour = -15;

System.out.println("Hour is " + t.hour);

1-35

 forbidden when field
marked "private"

Accessing private fields of an object

• Accessor method for Time class, hour field:

– return the value of an instance variable
public int getHour() {

return hour;

}

• Invoking the method:

Time t = new Time(10,40,30);

System.out.println("Hour is " + t.getHour());
1-36

Modifying private fields of an object

• Modifier method for Time class, hour field:

– change the value of an instance variable
public void setHour(int newHour) {

if (newHour>=0 && newHour < 24)

hour = newHour;

}

• Invoking the method:

Time t = new Time(10,40,30);

t.setHour(4); t.setHour(-15);
1-37

Inheritance

• Saves rewriting
code

• Code written
for a parent
(super) class
can be
inherited by a
child (derived)
class

1-38

Inheritance

• Some classes
are never
meant to be
instantiated

• They act as
prototypes for
their child
classes to
complete

1-39

Inheritance Example

public class Animal

{

private boolean brain;

private int legs;

public Animal()

{

brain = true;

legs = 0;

}

public class Pet extends Animal

{

private int fleas;

public Pet()

{

super(); // Animal cnstrtr

setLegs(4); //Animal mthd

fleas = 0; //Pet field

}
1-40

Inheritance relationships

• Inheritance should only be used when an "is-a"
relationship exists between parent/child

– a Human "is a"?? Animal

– a Dog "is a"?? Pet

– An Appointment "is a"?? Time

• If a "has a" relationship is more suitable

– use Composition

1-41

yes
yes

no!

an Appointment "has a" Time  Composition

Composition Example

public class Appointment{

String where; // An Appointment "has a"

Time when; // location and time

public Appointment(){ // no arg const

where = "---";

when = new Time(0,0,0);

}

}

1-42

Inheritance and arrays

• Arrays can only hold objects of the same class

• But inheritance creates "is a" relationships
between classes.

• Therefore, the following is legal:

Animal [] zoo = new Animal[3];

zoo[0] = new Human();

zoo[1] = new Cat();

zoo[2] = new Dog();

• An example of "Polymorphism" – many forms
1-43

Start Assignment 15

• OOP is a very deep topic, this has been just a
short overview of something we will explore
further in CSIS10B.

1-44

