
Think Java:

How to Think Like a Computer

Scientist

5.1.2

by Allen B. Downey

Chapter 11:

Create Your Own Objects

Our usual text takes a fairly non-standard departure in this chapter. Instead,

please refer to Chapter 5 Sections 5.1 – 5.4 of Eck, "Java Notes", also

linked from the class website. This is a longer treatment than what we

need, but it's great for those who want to learn more on this topic.

http://math.hws.edu/javanotes/c5/index.html
http://math.hws.edu/javanotes/

Agenda

• Structured Programming Paradigm

• Object-Oriented Programming Paradigm

• Creating your own Object Classes

• Time Class

– Constructors, Access Modifiers, get/set, printing

• Date Class, Student Class for reinforcement

• Object methods vs Class methods

• toString, equals, and compareTo methods

• Generating Javadocs

1-2

Programming languages and styles

• Many programming languages and styles

1-3

Structured Programming (1960's – 1980's)
often called "Procedural" Programming

• Problems are broken down into "chunks"

– each chunk is a method

– write each method and test

– string together calls to different methods solution

– focus on the "steps" of a problem

– (hopefully) re-use methods in other solutions

• As software became more complex,

– developers found it necessary to group related
methods into "Library" files.

– import Libraries when needed 1-4

Structured Programming uses static methods

• There were no classes back then.

– However, in Java, the closest thing to a "Library" would
be a class that contains only static methods.

– Like the Math class in Java

• To use an external "Library" (static) method in Java

– Name of class, (period), name of method

• double y = Math.sqrt(248);

• double z = Math.round(y);

1-5

CodingBat Exercises = Structured Programming

• You wrote and tested a number of methods on
CodingBat

– never got to use them in a real application

– put all of your static methods in CodingBat class

• you now have a "library"

• you can use the methods in other programs.

– We will demo this now in the Lab11 download

• Open StructuredProgramming class and complete
exercises

1-6

Here is the CodingBat "Library" / class with a
Structured Programming Application in BlueJ

1-7

Here is the CodingBat "Library"
with a static method to tell if we can sleepIn

1-8

Invoking a static method in an external class
notice: if (CodingBat.sleepIn …)

1-9

But…remember Old CodingBat class?

• If the static methods are in the same class as
main, you don't need to put the class name in
front of them.

1-10

Decline of Structured Programming as
dominant Paradigm (late '80's)

• Eventually, software projects grew even bigger
than what the Structured Programming
paradigm could deal with

– Apple introduces Graphical User Interfaces (Mac)

– Microsoft introduces WIndows

• Humans could not make sense of code
involving thousands of methods

– Coupling -- change one method = change lots more

– Software maintenance grew increasingly hard

– Software not so easy to re-use, wasted $$$ 1-11

Object-Oriented Programming (1990's - ?)

• In time, a new programming paradigm replaced
Structured Programming in prominence

– Software now focused on the "things" in the problem

– Solutions involve Objects interacting with other
Objects

– Objects are like "smart" variables that contain

• data (multiple related instance variables)

• methods that maintain the object's data, interact with others

– Less coupling easier to design

• Code is easier to maintain and re-use

• saves $$$ 1-12

Review:
Two Ways of representing information in Java

• Primitive types

– int x = 6;

• Object types

– Point center= new Point(1,8);

6

x

1-13

Primitive Types

• int, char, double, boolean

• hold only one piece of information

int x = 6; char c = '@';

• allow only certain operations

– arithmetic, comparison

x=x+4;

if(c == '#'){

6

x

1-14

Object types
• Scanner, String, Point, Rectangle

• composed of multiple pieces of information

• Object methods allow many different operations
word.toUpperCase();

center.translate(50,0);

keyboard.nextInt();

shape.addPoint(100,20);

1-15

You can define your own object types

• If you need an object type Java hasn't defined

– You can make your own

– This week we will be defining classes to represent

• Time objects 11:40:33

• Date objects 10/31/14

• Student objects Name: Jasmine Rizzo, units: 50, GPA: 3.9

– Defining a new class also creates a new object type
with the same name.

– A class definition is like a template for objects

• determines what information it holds (instance variables)

• determines what methods can be performed

1-16

Objects and Classes

• Every object belongs to some object type; that
is, it is an instance of some class.

• When you invoke new to create an object, Java
invokes a special method called a constructor
to initialize the instance variables. You provide
one or more constructors as part of the class
definition.

• The methods that operate on an object type are
defined in the class definition for that type.

1-17

Example of a user-defined class

• Declare a Time class:

• Create a Time object variable
Time t = new Time();

• What it looks like in memory

• Now run the main method in lab11/TimeTestApp.java

instance variables

1-18

Constructor Method
(Default or No-arg)

• Special method to initialize instance variables

• Same name as class in which it's defined

No return

type

The keyword

static is

removed

initialize

instance

variables

this means

the object we

are creating,

"this object"

Add the no-arg (aka “default”) constructor to the Time class1-19

Explicit Constructor
• Often need a constructor with a parameter list

– identical names to instance variables

• Just copies the information from the parameters to
the instance variables.

• This is an example of "overloading"

– now have two methods named Time in Time class

1-20

Overloading the Constructor
• Java tells which you mean by your method call:

Time t = new Time();

Time appt = new Time(11,30,0);

Add the above constructor to the Time class1-21

Compare: Point Class Constructors

1-22

Why Multiple Constructors?

• Provides flexibility, you can either:

A. create an object first then fill in the blanks (no-arg)

B. collect all the info before creating the object.

• Not terribly interesting

– Writing constructors is a boring, mechanical process.

– Can write quickly

• just by looking at list of instance variables.

1-23

Our Time Class so far

1-24

Our TimeTestApp class main method

1-25

Allowing user to set the fields is
dangerous!

1-26

Access Modifiers Protect data
• An example of Encapsulation

– "private" means only methods of Time class can change

1-27

We now need "Getters and Setters"
to access and modify the object data

• The getHour method

– returns the hour field of a Time object

• The setHour method

– lets you update the hour field

– could provide additional safety checking

– very easy to code…"mindless"
1-28

Using the get and set methods

• These methods are invoked using the syntax

– object name (dot) method name (parameters)

1-29

Default Printing for
User-defined Objects

• By default, Java prints the

– name of the type (Time)

– special hexadecimal (base 16) code

• Special code is

– unique for each object

– not meaningful in itself

– can vary from machine to machine, and run to run

– useful for debugging, in case you want to keep
track of individual objects.

1-30

Define a print method

public void print () {

System.out.println(hour + ":" +

minute + ":" +

second);

}

Better, but

Still not perfect

how to get 11:45:00 ?

1-31

One way: Revised print method
public void print () {

System.out.print(hour + ":");

if (minute < 10)

System.out.print("0" + minute + ":");

else

System.out.print(minute + ":");

if (second < 10)

System.out.println("0" + second);

else

System.out.println(second);

}

1-32

Do Lab11 PartA

• Complete the definition for a Date class and test

– use the Time class to model the pattern

– follow the instructions in DateTestApp

• Use a Student class

– add/test more capabilities

1-33

Agenda
• Review Object methods vs Class methods

• Using objects of a class in more situations

• creating objects from info from read from keyboard

• comparing parts of two objects using get methods

• writing a static method to process an object

1-34

Programming languages and styles

• Programming styles often called paradigms

• Programs we wrote so far are procedural style

– emphasis on computational procedures

• Dominant paradigm in modern software is
object oriented programming

– emphasis shifts to objects and their behaviors

– melding of data and methods into one thing:
object

• Modern software is often a mix of the two

– being skilled in both paradigms key to success

1-35

Review: Characteristics of OOP

• Objects represent entities in the real world
– An employee at a company
– A zombie in a video game
– A Bug/Rock/Flower in GridWorld

• Majority of methods are object methods
– like String methods: String s = "hi"; s.length();

• Rather than class methods
– like Math methods: Math.sqrt(5); Math.random().

• The methods we have written before this week have
all been class methods.

1-36

Review: Two Principles of OOP

• Encapsulation: objects are isolated from each
other by limiting the ways they interact,
especially by preventing them from accessing
instance variables without invoking methods.

• Inheritance: Classes are organized in family trees
where new classes extend existing classes, adding
new methods and replacing others.

– OOP design principles lead to cost savings over
procedural only design

1-37

Review: Object methods vs
class methods

• Class methods: have keyword static in header

– invoked using the Class containing the method

• Math.sqrt(3) , CodingBat.sleepIn(false, true);

• Object methods: invoked on an object

– String s = "hi"; s.length(); s.charAt(1); t.print();

– any method without static is an object method

• Can convert object methods to class methods

– and vice versa

– sometimes more natural to use one or the other

1-38

Review: print, an object method in
Time class

class Time{

int hour, minute; double second;

...

public void print() {

System.out.println(hour + ":" +

minute + ":" +

second);

}

}

Inside an object method you can refer to instance variables as
if they were local variables

1-39

Same print method,
adding this keyword

• Using this to refer to current object:

public void print() {

System.out.println(this.hour + ":" +
this.minute + ":" +

this.second);

}

By using this, it makes clear that hour, minute and
second are instance variables. Talking about this
object's hour, minute, second

1-40

Invoking the object method print

• Here's how it is invoked:

Time now = new Time(11,35,40);

now.print();

• When you invoke a method on an object
– it becomes the current object

– also known as this

– Inside print, the keyword this would refer to the
Time object the method was invoked on

1-41

printTime, a class method
in Time class

• This is a class method in the Time class:

public static void printTime(Time t) {

System.out.println(t.hour + ":" +

t.minute + ":" +

t.second);

}

Notice—1) keyword static means class method

2) Time t is received as a parameter

1-42

Invoking the class method
printTime

• Here's how it is invoked:
Time now = new Time(11,35,40);

Time.printTime(now);

• When you invoke a class method on an object
– the object is passed as an argument
– invoke with the Class name, "dot", method name

• Add printTime to Time class
– verify in TimeAppTester class

1-43

Organizing Class Definitions

• You can define object methods and class
methods in same class.

• Common order to keep clear:

– define instance variables

– define object methods

– define class methods

1-44

Encapsulation

• To preserve sanity in large projects
– limit access that other pieces of code have to our

particular object.

– Stop "silly" (or malicious) programmers from changing the
values of our instance variables.

– For example, in another class file someone writes:
Time t = new Time(12,25,35);

t.hour = -15;

System.out.println("Hour is " + t.hour);

1-45

 forbidden when field
marked "private"

Accessing private fields of an object

• Accessor method for Time class, hour field:

– return the value of an instance variable
public int getHour() {

return hour;

}

• Invoking the method:

Time t = new Time(10,40,30);

System.out.println("Hour is " + t.getHour());
1-46

Modifying private fields of an object

• Modifier method for Time class, hour field:
– change the value of an instance variable

public void setHour(int newHour) {

if (newHour>=0 && newHour < 24)

hour = newHour;

}

• Invoking the method:
Time t = new Time(10,40,30);

t.setHour(4); t.setHour(-15)

(ignored)
1-47

Summary: our object method toolbox

• Constructors (default and explicit) – to create

• Set and Get methods – to modify

• print method – to see what object holds

• These are a minimum toolbox with which we
can do a number of interesting things with
objects.

1-48

Reading an object from keyboard

• First, ask user to enter data
…println("When is appt? Enter hr, min, sec");

// user types 9 30 00

• Read data into temporary local variables
int hr = keyboard.nextInt();

int min = keyboard.nextInt();

double sec = keyboard.nextDouble();

• Create object using explicit constructor

Time appt = new Time(hr, min, sec);

…print("your appt is at");

appt.print(); // prints 9:30:0

1-49

We can compare objects

• You can compare different fields of an object
if (appt.getHour() > now.getHour())

System.out.println("Your appt has passed!");

• Don't use the equals method yet, we'll write later
if (appt.equals(now))

System.out.println("Your appt is now!");

1-50

We can write additional object
methods

class Time{

private int hour, minute;

private double second;

...

public double totalSeconds() {

double total = hour * 3600 +

minute * 60 +

second;

return total;

}

}

1-51

EXTRA MATERIAL

• The following slides illustrate three other very
useful methods you may want to incorporate
into your classes to fully round out their
capability.
– toString

– equals

– compareTo

• You don't need to learn these for this week.
They are optional for now.

1-52

The toString method

• Every object type has a method toString

– returns a string representation of the object

• When you System.out.print an object

– Java calls the object’s toString method automatically

– Default version just returns the object's Hex address

– System.out.print("The time is " + now);

– prints:

The time is Time@80cc7c0 1-53

Define a toString method for Time

• Can override the default behavior with own def:
public String toString() {

return hour + ":" +

minute + ":" +

second;

}

• Allows for better output:
– System.out.print("The time is " + now);

– prints: The time is 11:35:40

1-54

You could also invoke toString explicitly

• Just like any other object method

Time now = new Time(12,23,47);

String s = now.toString();

1-55

The equals method

• Two notions of equality:

– identity (==)

• two object variables that refer to the same object

String s1 = "yes", s2 = "yes";

if (s1 == s2) …

– equivalence (equals method)

• two objects that have the same values.

if (s1.equals(s2)) …

• Java provides default equals method

– same as identity (==)

1-56

false

true

Defining equals method for Time class

class Time {

private int hour, minute;

private double second;

...

public boolean equals(Time that) {

return this.hour == that.hour &&

this.minute == that.minute &&

this.second == that.second;

}

}

1-57

the compareTo method

• Checking for less than/greater than requires writing
a compareTo method.

• Remember, compareTo returns

– negative value if first object < second object

– 0 if first object .equals second object (same data)

– positive value if first object > second object

• Here's how you would use it:
if (appt.compareTo(now) > 0)

System.out.println("You missed your appt!");

1-58

Defining compareTo method for Time class

class Time {

private int hour, minute;

private double second;

...

public int compareTo(Time that) {

if (this.hour < that.hour)

return -1;

else if (this.hour == that.hour &&
this.minute < that.minute

return -1;

else if (this.hour == that.hour &&

this.minute == that.minute &&

this.second < that.second)
return -1

… continue to cover all possible cases

}

}

1-59

Alternative compareTo method for Time class

class Time {

private int hour, minute;

private double second;

...

public int compareTo(Time that) {

double thisTotalSec = this.totalSeconds();

double thatTotalSec = that.totalSeconds();

if (thisTotalSec < thatTotalSec)

return -1;

else if (thisTotalSec > thatTotalSec)

return 1;

else

return 0;

}

}

(the totalSeconds method
was defined on slide 51)

1-60

