
Think Java:

How to Think Like a Computer 

Scientist

5.1.2

by Allen B. Downey

Chapter 1:

The Way of the Program



Agenda

• Introductions

• Course Administration

• Programming Concepts

• Java “Hello World” Demo

• Debugging strategies



Welcome to CSIS10A  (5 mins) 

– Typical format for class meetings 

• Short lectures on Tuesday and Thursday (monitors at 90o)

• Lab Part A on Tuesday, part B on Thursday

• Listen, code, Listen, code

– Syllabus 

– Aim of this course (learning to think like a CS) 

– What is a program? A set of step-by-step instructions 
that directs a computer to solve some problem. 

– Pretty much anything you can do with a computer, 
you can do by programming in Java 



Do introductions (15 mins)

• class website: mpconline.mpc.edu

• Fill out the CSIS10A Guestbook survey

– Name 

– Major and what year 

– Why taking the course 

– Something unique about yourself



Do administrative stuff (10 mins) 

– Few if any handouts will be printed. They will be 
posted on the web instead. 

– No late work (model solutions, quick turnaround) 

– For conflicts with class meetings: let me know now! 

– We will use the  FREE ONLINE textbook Think Java

– Also recommended: Starting Out with Java by Gaddis 
(4th or 5th edition OK) for deeper coverage

– How to get help

• Computer science tutoring is available, contact Tom Rebold, 
trebold@mpc.edu for more information

mailto:trebold@mpc.edu


6

Warning – there is MATH in this class!!
• If you didn’t like math (algebra), you probably will 

have a hard time in this class

1. Solve for x:       5x + 3 = 13

2. What is 8 squared? 

3. Square root of 36

4. Area of a circle of radius 2:     

5. Average of    10, 14, 8, 4

6. Convert 3 kg into lbs 

7. Convert 43 ounces into pounds and ounces

8. What is 15% of $30.00 ? 



The Wise Approach

• If the class seems too hard for you

– enroll in the advisory courses first 

• like MATH263, ENGL111/112, CSIS9

– then come back to CSIS10A

• A solid foundation in English and Math

– will prepare you for much of what you will discover 
at MPC and beyond!

• Java has a number of advanced concepts

– CSIS9 provides a gentler programming intro



Overall Goal for Class

• The goal is for you to think like a computer 
scientist.

– Most important skill is problem-solving. 

– formulate problems

– think creatively about solutions

– express solutions neatly and accurately

• The process of learning to program is an 
excellent opportunity to practice problem-
solving skills. 



Basic computer anatomy 



What the parts do

• CPU 
– ``The brain''; performs relatively basic operations 
– It only executes machine language
– The machine language varies from CPU to CPU 

• Storage 
– Primary storage/random-access memory/RAM/``memory'' 

• Fast, but volatile and expensive 

– Secondary storage/hard drive/hard disk 
• Cheap and non-volatile, but slow 

• Input devices (the ``I'' in ``I/O'') 
– Mouse, keyboard 

• Output devices (the ``O'' in ``I/O'') 
– Monitor, speakers, printer 



What is a program?

• A program is a sequence of instructions that 
explain how to perform a computation

• Types of computations: 

– mathematical: 

• Example: solving system of equations

• computing cost of a grocery purchase

– symbolic:

• Example: search/replace text in a doc

• compiling a program



Example: A First Program

• Can you guess what the task is?

• Watch what happens when it runs



Program Statements

• The instructions in a program are called 
statements – only 5 different types

1. input: Get data from the keyboard or some other 
device.

2. output: Display data on the screen or other 
device.

3. math: Perform basic operation like addition and 
multiplication.

4. testing: Check for certain conditions and run the 
appropriate sequence of statements.

5. repetition: Perform some action repeatedly, 
usually with some variation.



Larger Tasks are Broken Down into Smaller

• Every program is made from the 5 operations. 

• Programming is the process of breaking a large, 
complex task into smaller and smaller subtasks

– until the subtasks are performed with one of these 
basic operations.

– which operation does the Hello World program 
use?



High Level Languages

• High-level language (readable by humans)

– Java, Python, C or C++, and Perl.

– almost all programs are written in high level 
languages

– shorter, easier to program, portable so they run on 
different computers

– easier to debug



Low Level Languages

• Low-level language (readable by computers)

– sometimes called machine language 

– computers can only run programs written in low-
level languages

– each computer processor (Intel vs Motorola vs 
AMD) runs different machine language

– Programs have to be translated into machine 
language before they can run. 



Compilers vs Interpreters

• Two ways to translate a program: 

• Interpreter: translates line-by-line

– alternately read line and carrying out command

– translation takes place every time program is run

• Compiler: translates all at once

– before running any of the commands

– high-level program is the source code

– translated program is object code or “executable”

– compile once, run the compiled code later. 



Java is both compiled and interpreted

• Java Compiler generates byte code

• Java Virtual Machine (JVM) interprets byte code

– Byte code is like machine language

– Byte code is portable, like a high-level language. 

– Can compile a program on one machine, interpret the 
byte code on another machine

– This ability is an advantage of Java over many other 
high-level languages.



Running a program in Java



Source File

• A source file contains source code and is really just 
a simple text file. It contains (among other things) 
instructions for the computer to execute. 
– A ``.java'' ending is used to distinguish it as a Java 

source file 

– Java files have special structure so that the computer 
can translate it into machine code. 

– Use a text editor or an IDE (in this class we use BlueJ 
but you can also use Eclipse) to create source and 
make changes to it. 

– We'll make a simple  "Hello World" program now!



Java source file  Hello.java

public class Hello {
public static void main(String[] args) {

System.out.println("Hello, World!");
}

}



Java Bytecode for previous slide (Hello.class)

202 254 186 190 0 0 0 49 0 34 1 0 10 72 101 108 108 111 87 111 114 108 100 7 0 1 
1 0 16 106 97 118 97 47 108 97 110 103 47 79 98 106 101 99 116 7 0 3 1 0 6 60 105 
110 105 116 62 1 0 3 40 41 86 1 0 4 67 111 100 101 12 0 5 0 6 10 0 4 0 8 1 0 15 76 
105 110 101 78 117 109 98 101 114 84 97 98 108 101 1 0 18 76 111 99 97 108 86 97 
114 105 97 98 108 101 84 97 98 108 101 1 0 4 116 104 105 115 1 0 12 76 72 101 
108 108 111 87 111 114 108 100 59 1 0 4 109 97 105 110 1 0 22 40 91 76 106 97 
118 97 47 108 97 110 103 47 83 116 114 105 110 103 59 41 86 1 0 16 106 97 118 97 
47 108 97 110 103 47 83 121 115 116 101 109 7 0 16 1 0 3 111 117 116 1 0 21 76 
106 97 118 97 47 105 111 47 80 114 105 110 116 83 116 114 101 97 109 59 12 0 18 
0 19 9 0 17 0 20 1 0 13 72 101 108 108 111 44 32 87 111 114 108 100 33 8 0 22 1 0 
19 106 97 118 97 47 105 111 47 80 114 105 110 116 83 116 114 101 97 109 7 0 24 1 
0 7 112 114 105 110 116 108 110 1 0 21 40 76 106 97 118 97 47 108 97 110 103 47 
83 116 114 105 110 103 59 41 86 12 0 26 0 27 10 0 25 0 28 1 0 4 97 114 103 115 1 0 
19 91 76 106 97 118 97 47 108 97 110 103 47 83 116 114 105 110 103 59 1 0 10 83 
111 117 114 99 101 70 105 108 101 1 0 15 72 101 108 108 111 87 111 114 108 100 
46 106 97 118 97 0 33 0 2 0 4 0 0 0 0 0 2 0 1 0 5 0 6 0 1 0 7 0 0 0 47 0 1 0 1 0 0 0 5 42 
183 0 9 177 0 0 0 2 0 10 0 0 0 6 0 1 0 0 0 14 0 11 0 0 0 12 0 1 0 0 0 5 0 12 0 13 0 0 0 9 
0 14 0 15 0 1 0 7 0 0 0 55 0 2 0 1 0 0 0 9 178 0 21 18 23 182 0 29 177 0 0 0 2 0 10 0 0 
0 10 0 2 0 0 0 16 0 8 0 17 0 11 0 0 0 12 0 1 0 0 0 9 0 30 0 31 0 0 0 1 0 32 0 0 0 2 0 33 



10 min Break
then Demo Pair Programming (Show video)

• Pair up with the person sitting next to you

• One person types

– the other “steers” (checks for errors)

– Change Roles!!!  Every 10 minutes

• Use BlueJ to write, compile, and run

– The “Hello World” program

http://www.realsearchgroup.org/pairlearning/videos/pairprogramming_students.wmv


Debugging

• Programming errors are called bugs 

• the process of tracking them down and correcting 
them is called debugging

• three kinds of errors that can occur in a program

– Syntax Errors: mistakes in grammar

– Run-time Errors: something unexpected happens at 
runtime

– Logic or Semantic Errors: program computes wrong 
result



Syntax Errors – found by Compiler

• Syntax refers to the structure of your program 
and the rules about that structure. 

– in English, a sentence must begin with a capital 
letter and end with a period. 

• this sentence contains a syntax error. 

• So does this one

• Compilers are not forgiving

– a single syntax error stops the compiler from 
translating your program to machine language

– prints out error message 

– demonstrate with Hello World program



Run-time errors -- detected by the 
interpreter (Java Virtual Machine)

• Run-time error – happens when you run program

– In Java, when the JVM notices something goes wrong.

– In Java, run-time errors are called exceptions 

– appear as window or dialog box that contain 
information about what happened 

• useful for debugging

• Demo run-time error in Hello World program: 
Divide by Zero



Logic or Semantic Errors – detected by 
programmer

• logic or semantic error -- program compiles 
and run but does not do the right thing. 

– does something else. 

– what you told it to do!

• The problem is the program you wrote is not 
the program you wanted to write. 

• The semantics, or meaning of the program, are 
wrong. 



Identifying Logic Errors

• work backwards 

• look at the output of the program 

• try to figure out what it is doing

• Demo: add screen buffer flush to be able to 
reset error messages. 

– Modify println to have empty parens with text in 
comment (no output)



Experimental Debugging

• like detective work: 

– given various clues, can you determine why you get 
the results you see?

• also like an experimental science

– guess what is wrong

– modify your program and try again. 

– If your hypothesis was correct, you are closer to a 
working program

– If your hypothesis was wrong, you have to come up 
with a new one. 



TIP: Use Incremental Development

• Programming is the process of gradually 
debugging a program until it does what you 
want. 

– Always start with a working program that does 
something

– make small modifications, debugging them as you 
go, so that you always have a working program.

– Baby steps take you to the goal

– Never write the whole program then debug
– You’ll likely have to throw it out and start over!

– Giant steps lead to disaster!



Breaking down the Hello World program

• This program includes features that are hard to 
explain to beginners, but it provides a preview 
of topics we will see in detail later.



Class Definition

• Java programs are made up of class definitions, 
which have the form:

• Here CLASSNAME indicates a name chosen by 
the programmer. 

• The class name in the example is Hello.



Main Method

• main is a method, which is a named collection of 
statements. 

– When the program runs, it starts at the first statement in 
main and ends at the last statement.

– main can have any number of statements, but the 
example has only one: a print statement

– The print statement ends with a semi-colon (;)

– System.out.println is a method provided by one of 
Java's libraries. 

– A library is a collection of class and method definitions. 



Curly Braces and Comments

• Java uses curly-braces { and } to group things

– outermost squiggly-braces (lines 2 and 9) contain the 
class definition

– inner braces contain the definition of main

• Line 3 begins with //. That means it's a comment

– English text that you can put in a program, to explain 
what it does. 

– When compiler sees //, it ignores everything from 
there until the end of the line.



Start Lab 1, Part A

• We will continue with Part B on Thursday


